Σ hyperons reconstruction by the missing mass method

Ivan Kisel1,2,3, Pavel Kisel1,3,4, Peter Senger3, Iouri Vassiliev3, Maksym Zyzak1,3
(for the CBM collaboration)

1 – Goethe-Universität Frankfurt, Frankfurt am Main, Germany
2 – Frankfurt Institute for Advanced Studies, Frankfurt am Main, Germany
3 – GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany
4 – Joint Institute for Nuclear Research, Dubna, Russia

DPG Spring Meeting, Darmstadt
15.03.2016
Σ⁺ and Σ⁻ physics:

- completes the picture of strangeness production: abundant particles, carry out large fraction of strange quarks;
- possible to compare yields of Σ and Σ⁺ production, that can be used in study of the QCD phase diagram;
- reconstruction of resonances decaying into Σ;
- reconstruction of hypothetic particles, like H-dibaryon.

Main decay modes:

- \(\Sigma^+ \rightarrow p\pi^0 \) \(\Sigma^+ \rightarrow \bar{p}\pi^0 \) \(\text{BR} = 51.6\% \)
- \(\Sigma^+ \rightarrow n\pi^+ \) \(\Sigma^+ \rightarrow \bar{n}\pi^- \) \(\text{BR} = 48.3\% \)
- \(\Sigma^- \rightarrow n\pi^- \) \(\Sigma^- \rightarrow \bar{n}\pi^- \) \(\text{BR} = 99.8\% \)

The main challenge: at least one neutral daughter in a decay channel
Missing Mass Method

- Σ^+ and Σ^- have only channels with at least one neutral daughter.
- A lifetime is sufficient to be registered by the tracking system: $c\tau = 2.4$ cm for Σ^+ and $c\tau = 4.4$ cm for Σ^-.
- Can not to be identified by the PID detectors.
- Identification is possible by the decay topology:

 Find tracks of Σ and its charged daughter in STS and MVD

 Reconstruct a neutral daughter from the mother and the charged daughter

 Reconstruct Σ mass spectrum from the charged and obtained neutral daughters

- Σ^+ and Σ^- have only channels with at least one neutral daughter.
- A lifetime is sufficient to be registered by the tracking system: $c\tau = 2.4$ cm for Σ^+ and $c\tau = 4.4$ cm for Σ^-.
- Can not to be identified by the PID detectors.
- Identification is possible by the decay topology:

- Σ^+ and Σ^- have only channels with at least one neutral daughter.
- A lifetime is sufficient to be registered by the tracking system: $c\tau = 2.4$ cm for Σ^+ and $c\tau = 4.4$ cm for Σ^-.
- Can not to be identified by the PID detectors.
- Identification is possible by the decay topology:
The acceptance of STS for Σ^+ and Σ^- is limited by $50 < Z < 70$ cm:
- the primary Σ track can have 3 or 4 hits;
- the π^- daughter track should have at least 4 hits.

MVD allows to increase the acceptance significantly to $15 < Z < 70$ cm.
\(\Sigma^+ \) and \(\Sigma^- \) reconstruction with STS and MVD

MVD+STS

\[\Sigma^- \rightarrow n\pi^- \]

Entries \(\times 10^3 \)

- \(m_{\text{inv}} \) [GeV/c²]

<table>
<thead>
<tr>
<th>(m_{\text{inv}}) [GeV/c²]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.2</td>
</tr>
<tr>
<td>1.4</td>
</tr>
<tr>
<td>1.6</td>
</tr>
</tbody>
</table>

\(\Sigma^- \rightarrow n\pi^- \)

\(\Sigma^+ \rightarrow n\pi^+ \)

Entries \(\times 10^3 \)

- \(m_{\text{inv}} \) [GeV/c²]

<table>
<thead>
<tr>
<th>(m_{\text{inv}}) [GeV/c²]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.2</td>
</tr>
<tr>
<td>1.4</td>
</tr>
<tr>
<td>1.6</td>
</tr>
</tbody>
</table>

\(\Sigma^+ \rightarrow n\pi^+ \)

\[\Sigma^+ \rightarrow p\pi^0 \]

Entries \(\times 10^3 \)

- \(m_{\text{inv}} \) [GeV/c²]

<table>
<thead>
<tr>
<th>(m_{\text{inv}}) [GeV/c²]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.2</td>
</tr>
<tr>
<td>1.4</td>
</tr>
<tr>
<td>1.6</td>
</tr>
</tbody>
</table>

\(\Sigma^+ \rightarrow p\pi^0 \)

5M central UrQMD AuAu events at 10 AGeV, no PID
The background has a complicated structure and will be further studied.
The proposed method can be applied for reconstruction of multi-strange hyperons:

\[\Xi^- \rightarrow \Lambda \pi^- \quad \text{with} \quad \Lambda \rightarrow n\pi^0 \quad \text{BR} = 35.6\% \]
\[\Xi^+ \rightarrow \bar{\Lambda} \pi^+ \quad \text{with} \quad \bar{\Lambda} \rightarrow \bar{n}\pi^0 \quad \text{BR} = 35.6\% \]
\[\Omega^- \rightarrow \Lambda K^- \quad \text{with} \quad \Lambda \rightarrow n\pi^0 \quad \text{BR} = 24.3\% \]
\[\Omega^+ \rightarrow \bar{\Lambda} K^+ \quad \text{with} \quad \bar{\Lambda} \rightarrow \bar{n}\pi^0 \quad \text{BR} = 24.3\% \]
\[\Omega^- \rightarrow \Xi^0 \pi^- \quad \text{BR} = 23.6\% \]
\[\Omega^+ \rightarrow \Xi^0 \pi^+ \quad \text{BR} = 23.6\% \]

Kaons and Pions:

\[\pi^+ \rightarrow \mu^+ \nu_\mu \quad \text{BR} = 99.99\% \]
\[\pi^- \rightarrow \mu^- \bar{\nu}_\mu \quad \text{BR} = 99.99\% \]
\[K^+ \rightarrow \mu^+ \nu_\mu \quad \text{BR} = 63.6\% \]
\[K^- \rightarrow \mu^- \bar{\nu}_\mu \quad \text{BR} = 63.6\% \]
\[K^+ \rightarrow \pi^+ \pi^0 \quad \text{BR} = 20.7\% \]
\[K^- \rightarrow \pi^- \pi^0 \quad \text{BR} = 20.7\% \]

These decays are being added to the KF Particle Finder (HK 25.5)

Reconstruction of these decays allows to:
- increase reconstruction efficiency for multi-strange hyperons;
- investigate systematic errors;
- study the background.
Summary

• The method for reconstruction of Σ^+ and Σ^- has been developed, that allows to complete the picture of strangeness production.

• The missing mass method provides a capability to reconstruct Σ^+ and Σ^- with high efficiencies and S/B ratios.

• The method can be applied for reconstruction of other decays including multi-strange hyperons and hypernuclei.

Plans

• Implement all decays in KF Particle Finder.

• Add PID information.