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Nature 

The scientific method
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Manifests itself in
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help us understand

inspire

Theories

The quantification of uncertainties 
is absolutely critical for progress. 
This applies BOTH to the 
measurement and to the theory.



▸ Start from nucleonic degrees of freedom and construct an 
effective inter-nucleon force. 

▸ This force will have to be constrained by data. 

▸ Solve the few- or many-nucleon problem and compute 
observables. 

AB INITIO NUCLEAR PHYSICS - NUCLEONIC DEGREES OF FREEDOM

Connection with QCD

REALISTIC INTERACTIONS: NN scattering data reproduced

AB INITIO many -body methods

𝜎data

𝜎model

𝜎num+method

OUR AIM: A credible program for uncertainty 
quantification in nuclear theory



▸ Consider an A-nucleon system described by a well defined microscopic 
Hamiltonian 

▸ Ab initio methods solve the relevant QM many-body equations without 
uncontrolled approximations 

▸ Controlled approximations, e.g. number of channels, are allowed since they can 
be systematically improved. 

▸ Converged results are considered precise ab initio results. 

▸ Ab initio methods: No-Core Shell Model,  Coupled clusters, Green’s function 
Monte Carlo, In- Medium SRG, Lattice EFT

AB INITIO APPROACHES



AB INITIO APPROACHES

TECHNOLOGY EXAMPLE: 
LARGE-SCALE MATRIX DIAGONALIZATION
‣ Current limit: Ndim = 1010 
‣ Sparse, BUT: Nnon-zero=5×1014, 

equivalent to 6 PB data 
‣ In effect, we perform 2.5×109 

multiplications / sec / machine



TREND IN REALISTIC AB INITIO CALCULATIONS

Trend in realistic ab initio calculations 
Explosion of many-body methods  
(Coupled clusters, Green’s function Monte Carlo, In-
Medium SRG, Lattice EFT, No-Core Shell Model, 
Self-Consistent Green’s Function, UMOA, …) 

Computational capabilities exceed accuracy of available interactions  
[Binder et al, Phys. Lett. B 736 (2014) 119] “Computational capabilities exceed accuracy of available interactions “

[Binder et al, Phys. Lett. B 736 (2014) 119]



▸ Utilize a separation of scales. 

▸ Long distance solved explicitly (e.g. known symmetries);  
short-distance unresolved — capture in LECs. 

▸ Power counting; expansion parameter(s) — e.g., ratio of scales. 

▸ Classical physics analogy to EFT:  
Multipole expansion for electric field far away from (small) 
charge distribution (a≪r)

EFFECTIVE THEORIES
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Multipole expansions (continued)

If the reference point for potential is 
(and can be) at infinity, then

If point P is far away from the charge 
distribution, then 
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…

Chiral EFT 

• E. Epelbaum, H. Hammer, U. Meissner 
Rev. Mod. Phys.  81 (2009) 1773 

• R. Machleidt, D. Entem, Phys. Rep. 503 
(2011) 1

Chiral EFT

CHIRAL EFFECTIVE FIELD THEORY

π 140 MeV

ρ 770 MeV
ω 782 MeV

ma
ss 

ga
p

hard scale

soft scale

Λχ

Q

• Systematic low-energy 
expansion: (Q/Λχ)𝜈 

• Connects several sectors: 
𝜋N, NN, NNN, jN 

• Short-range physics included 
as contact interactions. 

• LECs need to be fitted to 
data.



New territory frontier 
▸ Heavier systems 
▸ Away from closed shells 
▸ Hypernuclei 

 
Continuum frontier 
▸ Approaching the drip lines 
▸ Unified theory of structure and 

reactions 

Precision and accuracy frontiers 
▸ Accurate results 
▸ Precise results: 

- Uncertainty quantification, 
  Error propagation 

Service frontier 
▸ Deliver reliable input to other 

communities 
▸ Cross sections, masses, etc  

(0𝜈ββ, dark matter, astrophysics 
processes, …) 

Technology frontier 
▸ New computational hardware 
▸ Algorithms, applied 

mathematics

FRONTIERS IN LOW-ENERGY NUCLEAR PHYSICS (AB INITIO THEORY)



THE ACCURACY AND 
PRECISION FRONTIER



Overview of our research efforts

▸ Does nuclear-physics phenomena 
emerge in a “from few to many” ab 
initio approach? 

▸ Is available few-body data sufficient 
to constrain this model? Does the 
model become fine-tuned?

Explore alternative strategies of 
informing the model about low-
energy many-body observables. ▸ Can/should emergent phenomena 

be used to constrain  the model? 

▸ How to quantify systematic 
uncertainties in such an approach?

Diversify and extend the statistical 
analysis of chiral-EFT based nuclear 
interactions in a data-driven approach. 

We aim to develop the technology 
and ability to:



Ab initio nuclear physics with 𝛘EFT and 
error analysis

THEORETICAL UNCERTAINTY QUANTIFICATION



Optimization strategy
Low-energy constants (LECs) enter through contact 
interactions and need to be fitted to experimental data. 

❖ Standard approach: sequential, chi-by-eye optimization; fits to phase 
shifts; N3LO needed for high-accuracy fit up to Tlab=290 MeV. 

❖ From 2013: Optimization technology significantly improved. 

❖ From 2015: Fits to experimental data including uncertainties. 

❖ From 2016: Algorithmic Differentiation (AD) to get precise derivatives.
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Input and technology
𝝅N scattering 
• WI08 database 
• Tlab between 10-70 MeV 
• Ndata = 1347 
• 𝜒EFT(Q4) to avoid underfitting

NN scattering 
• SM99 database 
• Tlab between 0-290 MeV 
• Ndata = 2400(np) + 2045(pp) 
• 𝜒EFT(Q0,Q2,Q3)

All 6000 residuals computed on 1 node in ~90 sec.
A=3 bound states 
• 3H,3He (binding energy, 

radius, 3H half life)

On 1 node in ~10 sec

+ derivatives! (×2-20 cost)



Statistical error analysisStatistical errors

I In a minimum there will be an uncertainty in the optimal
parameter values p

0

given by the �2 surface.1

I From the hessian at p
0

we can calculate a covariance matrix
and from that a correlation matrix.

1

J Dobaczewski et al 2014 J. Phys. G: Nucl. Part. Phys. 41 074001

Boris D. Carlsson �EFT optimization

HESSIAN
COVARIANCE

MATRIX
CORRELATION

MATRIX



Sequential optimization

�2 (~p) ⌘
X

i

r2i (~p) =
X

j2NN

r2j (~p) +
X

k2⇡N

r2k (~p) +
X

l23N

r2l (~p)

Sequential fit 

By construction no 
correlations between 
𝛑N, NN, NNN groups 
of parameters. 

This will imply huge 
statistical errors.
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Simultaneous optimization

BUT, the same LECs 
appear in the 
expressions for 
various low-energy 
processes 

e.g. the ci (green 
dot)   
and cD (blue 
square)

two-nucleon
interaction

pion-nucleon
scattering

three-nucleon
interaction

external probe
current

three-nucleon
interaction
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Order-by-order convergence
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Order-by-order convergence

Preliminary

N3LO optimizations are challenging
41 parameters to optimize, 
No new parameters in the 
three-nucleon force.
3NF matrix elements recently 
made available (K. Hebeler) 2π-1π2π rings 2π-contact

+ rel. corr.
@N3LO:  
- at least 100 minima 
- all with a good description 
of 𝜋N, NN, NNN data
Possible solutions: 

- Additional data… NNN 
scattering,  

- Additional data… 
Heavier systems 

- Bayesian statistics… 

are all computationally very 
costly

Total np cross section



Uncertainty quantification in the few-body sector

O(p) ⇡ O(p0) + JO�p+
1

2
�pTHO�p

E(4He) = -28.24    (MeV)+9 
 -11

Preliminary

Bands indicate effects of cutoff variation and different 
truncations in the NN database.

Statistical error propagation

Systematic (model) error estimate



Conclusion



We’re in a golden age for low-energy nuclear physics theory 

▸ EFT and RG have become important tools for precision when combined 
with ab initio many-body methods. 
Finally — rapid progress on theoretical uncertainty quantification! 

▸ Synergies of analytic theory, computation, and experiment.  

▸ How accurate can we make our Hamiltonians? 

▸ The use of advanced computational methods and new technologies are 
key for progress. 

▸ Stay tuned!

OUTLOOK

We’re entering the era of precision nuclear physics!
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“UNCERTAINTY IS AN 
UNCOMFORTABLE POSITION…”

Voltaire

“UNCERTAINTY IS AN 
UNCOMFORTABLE POSITION.  
BUT CERTAINTY IS AN ABSURD ONE.”


