

NUCLEAR FORCES AND THEORETICAL UNCERTAINTIES

NUSTAR annual meeting, GSI, Darmstadt, March 2, 2017

CHRISTIAN FORSSÉN

Department of Physics, Chalmers University of Technology, Sweden

The scientific method

AB INITIO NUCLEAR PHYSICS - NUCLEONIC DEGREES OF FREEDOM

OUR AIM: A credible program for uncertainty quantification in nuclear theory

Start from nucleonic degrees of freedom and construct an effective inter-nucleon force.

Connection with QCD

This force will have to be constrained by data.

 σ_{model}

REALISTIC INTERACTIONS: NN scattering data reproduced

Solve the few- or many-nucleon problem and compute observables.

AB INITIO many -body methods

AB INITIO APPROACHES

- Consider an A-nucleon system described by a well defined microscopic Hamiltonian
- ▶ Ab initio methods solve the relevant QM many-body equations without uncontrolled approximations
- Controlled approximations, e.g. number of channels, are allowed since they can be systematically improved.
- Converged results are considered precise ab initio results.
- Ab initio methods: No-Core Shell Model, Coupled clusters, Green's function Monte Carlo, In- Medium SRG, Lattice EFT

AB INITIO APPROACHES

TECHNOLOGY EXAMPLE: LARGE-SCALE MATRIX DIAGONALIZATION

- Current limit: $N_{dim} = 10^{10}$
- Sparse, BUT: $N_{\text{non-zero}} = 5 \times 10^{14}$, equivalent to 6 PB data
- In effect, we perform 2.5×10° multiplications / sec / machine

TREND IN REALISTIC AB INITIO CALCULATIONS

"Computational capabilities exceed accuracy of available interactions "

EFFECTIVE THEORIES

- Utilize a separation of scales.
- Long distance solved explicitly (e.g. known symmetries);
 short-distance unresolved capture in LECs.
- ▶ Power counting; expansion parameter(s) e.g., ratio of scales.

CHIRAL EFFECTIVE FIELD THEORY

Chiral EFT

- Systematic low-energy expansion: $(Q/\Lambda_X)^{\nu}$
- Connects several sectors: πN , NN, NNN, j_N
- Short-range physics included as contact interactions.
- LECs need to be fitted to data.

Chiral EFT

- E. Epelbaum, H. Hammer, U. Meissner Rev. Mod. Phys. **81** (2009) 1773
- R. Machleidt, D. Entem, Phys. Rep. **503** (2011) 1

FRONTIERS IN LOW-ENERGY NUCLEAR PHYSICS (AB INITIO THEORY)

New territory frontier

- Heavier systems
- Away from closed shells
- Hypernuclei

Continuum frontier

- Approaching the drip lines
- Unified theory of structure and reactions

Precision and accuracy frontiers

- Accurate results
- Precise results:
 - Uncertainty quantification,
 Error propagation

Service frontier

- Deliver reliable input to other communities
- Cross sections, masses, etc $(0\nu\beta\beta$, dark matter, astrophysics processes, ...)

Technology frontier

- New computational hardware
- Algorithms, applied mathematics

THE ACCURACY AND PRECISION FRONTIER

Overview of our research efforts

- Does nuclear-physics phenomena emerge in a "from few to many" ab initio approach?
- Is available few-body data sufficient to constrain this model? Does the model become fine-tuned?

We aim to develop the technology and ability to:

Diversify and extend the **statistical analysis** of chiral-EFT based nuclear interactions in a **data-driven** approach.

- Can/should emergent phenomena be used to constrain the model?
- How to quantify systematic uncertainties in such an approach?

Explore alternative strategies of informing the model about low-energy many-body observables.

THEORETICAL UNCERTAINTY QUANTIFICATION

Ab initio nuclear physics with XEFT and error analysis

Optimization strategy

Low-energy constants (LECs) enter through contact interactions and need to be fitted to experimental data.

$$\chi^{2}(\vec{p}) \equiv \sum_{i} \left(\frac{O_{i}^{\text{theo}}(\vec{p}) - O_{i}^{\text{expr}}}{\sigma_{\text{tot},i}} \right)^{2} \equiv \sum_{i} r_{i}^{2}(\vec{p})$$

Optimization

- **Standard approach:** sequential, chi-by-eye optimization; fits to phase shifts; N^3LO needed for high-accuracy fit up to T_{lab} =290 MeV.
- From 2013: Optimization technology significantly improved.
- From 2015: Fits to experimental data including uncertainties.
- From 2016: Algorithmic Differentiation (AD) to get precise derivatives.

Input and technology

π N scattering

- WI08 database
- T_{lab} between 10-70 MeV
- $N_{data} = 1347$
- χ EFT(Q⁴) to avoid underfitting

NN scattering

- SM99 database
- T_{lab} between 0-290 MeV
- $N_{data} = 2400(np) + 2045(pp)$
- $\chi EFT(Q^0, Q^2, Q^3)$

All 6000 residuals computed on 1 node in ~90 sec.

A=3 bound states

• ³H,³He (binding energy, radius, ³H half life)

On 1 node in ~10 sec

+ derivatives! (×2-20 cost)

Statistical error analysis

▶ In a minimum there will be an uncertainty in the optimal **parameter values p**₀ given by the χ^2 surface.¹

ightharpoonup From the hessian at ho_0 we can calculate a **covariance matrix** and from that a correlation matrix.

HESSIAN

$$H_{ij}=rac{1}{2}\left.rac{\partial^2\chi^2}{\partial x_i\partial x_j}
ight|_{\mathbf{x}=\mathbf{x}_{\mu}}$$

COVARIANCE MATRIX

$$oldsymbol{\Sigma} = rac{\chi^2}{N_{df}} \mathbf{H}^{-1}$$

CORRELATION MATRIX

$$\mathbf{\Sigma} = rac{\chi^2}{N_{df}} \mathbf{H^{-1}} \qquad R_{ij} = rac{\Sigma_{ij}}{\sqrt{\Sigma_{ii} \Sigma_{jj}}}$$

¹J Dobaczewski et al 2014 J. Phys. G: Nucl. Part. Phys. 41 074001

Sequential optimization

$$\chi^{2}\left(\vec{p}\right) \equiv \sum_{i} r_{i}^{2}\left(\vec{p}\right) = \underbrace{\sum_{j \in NN} r_{j}^{2}\left(\vec{p}\right)}_{\mathbf{2}} + \underbrace{\left(\sum_{k \in \pi N} r_{k}^{2}\left(\vec{p}\right)\right)}_{\mathbf{k} \in \pi N} + \underbrace{\left(\sum_{k \in \pi N} r_{k}^{2}\left(\vec{p}\right)\right)}_{\mathbf{3}} + \underbrace{\left(\sum_{k \in \pi N} r_{k}^{$$

Simultaneous optimization

$$\chi^{2}(\vec{p}) \equiv \sum_{i} r_{i}^{2}(\vec{p}) = \sum_{j \in NN} r_{j}^{2}(\vec{p}) + \sum_{k \in \pi N} r_{k}^{2}(\vec{p}) + \sum_{l \in 3N} r_{l}^{2}(\vec{p})$$

BUT, the same LECs appear in the expressions for various low-energy processes

- e.g. the c_i (green dot)
- and c_D (blue square)

two-nucleon interaction

pion-nucleon scattering

three-nucleon interaction

three-nucleon interaction

Simultaneous

external probe current

Order-by-order convergence

Order-by-order convergence

N3LO optimizations are challenging

41 parameters to optimize, No new parameters in the three-nucleon force. 3NF matrix elements recently made available (K. Hebeler)

@N3LO:

- at least 100 minima
- all with a good description of π N, NN, NNN data

Possible solutions:

- Additional data... NNN scattering,
- Additional data...
 Heavier systems
- Bayesian statistics...

are all computationally very costly

Uncertainty quantification in the few-body sector

Statistical error propagation

$$O(\mathbf{p}) \approx O(\mathbf{p}_0) + J_O \Delta \mathbf{p} + \frac{1}{2} \Delta \mathbf{p}^T H_O \Delta \mathbf{p}$$

$$E(^{4}He) = -28.24^{+9}_{-11}(MeV)$$

Systematic (model) error estimate

Bands indicate effects of cutoff variation and different truncations in the NN database.

Conclusion

OUTLOOK

We're in a golden age for low-energy nuclear physics theory

- EFT and RG have become important tools for precision when combined with ab initio many-body methods.
 - Finally rapid progress on theoretical uncertainty quantification!
- Synergies of analytic theory, computation, and experiment.
- How accurate can we make our Hamiltonians?
- The use of advanced computational methods and new technologies are key for progress.
- Stay tuned!

We're entering the era of precision nuclear physics!

Many thanks to my collaborators

- Boris Carlsson, Andreas Ekström, Daniel Gazda, Håkan Johansson, Emil Ryberg, Daniel Sääf (Chalmers)
- Gustav Jansen, Gaute Hagen, Thomas Papenbrock (ORNL/UT)
- Morten Hjorth-Jensen (MSU/UiO), Witek Nazarewicz (MSU)
- Kai Hebeler, Achim Schwenk, Kyle Wendt (TU Darmstadt)

Research funded by:

- STINT
- European Research Council

"UNCERTAINTY IS AN UNCOMFORTABLE POSITION..." BUT CERTAINTY IS AN ABSURD ONE."

Voltaire