

Probing the effect of the continuum: results on ²⁶F and ¹⁴B

M. Vandebrouck, A. Lepailleur, O. Sorlin, R³B collaboration

marine.vandebrouck@cea.fr

Motivation

• Extension of the valley of stability between O and F

3-body forces and continuum effect are essential to reproduce the O/F drip line T. Otsuka *et al.*, PRL **105**, 032501(2010)

G. Hagen *et al.*, PRL **108**, 242501(2012)

Motivation

- ²⁴O doubly magic
- ${}^{26}\mathbf{F} \approx {}^{24}\text{O core} + 1\text{p} + 1\text{n} : \text{coupling } (\pi d_{5/2})^1 (\nu d_{3/2})^1$

J^{π} = 1⁺, 2⁺, 3⁺, 4⁺ multiplet.

• Comparison between the exp. BE $J^{\pi} = 1^+, 2^+, 3^+, 4^+ \text{ w}/ {}^{24}\text{O core} + 1p + 1n$ definition of the interaction energy Int(J)

- Representation of the p-n coupling w/ parabola of interaction energy Mean value gives access to the average p-n interaction (monopole term) Amplitude depends on the residual interaction
- Effect of the continuum

large p-n asymmetry of BE

Study of the 1⁺ ground state in ²⁶F

• Mass measurement by time-of-flight technique using SPEG spectrometer

 $BE(^{26}F)_{1+} = 184.232 \text{ MeV}$ B. Jurado *et al.*, PRL **100**, 152502(2008)

• Beta decay of ^{26}F to ^{26}Ne , J^{π} = 1+ identified as the ^{26}F ground state A.T. Reed et al., PRC 60, 024311(1999)

DSSSD

1000µm

M3:643.4 (1) keV

՝ Դ~~~~Դերհայիլ <mark>Ռ</mark>~

660

640

Energy (keV)

A. Lepailleur et al., PRL 110, 082502(2013)

E3

500µm

26F

others

β-gated

620

Al

veto

5000µm

Clovers

Ge-

x 1

x 0.25

х1

680

Candidate for the 3⁺ unbound state in ²⁶F

• Resonance populated at 270 keV above the neutron threshold in ²⁶F from charge-exchange reaction

Analysis procedure

- Detection all particles + momenta \implies Study ²⁶F unbound states w/ **invariant mass method** • Relative energy of the system (fragment + n) = (²⁵F+n) : $E_{rel} = \sqrt{m_f^2 + m_n^2 + 2(E_f E_n - p_f p_n \cos \theta)c^2}$
- Resonances described by Breit-Wigner line shape

- \checkmark Strong cross-section around Er
- ✓ Shape depends on $l_n = 0,1,2$
- \checkmark Characterized by **Er** et Γ **r**

Convoluted by the LAND response matrix Functions used to fit the relative energy spectra

M. Vandebrouck

²⁷Ne
$$\xrightarrow{-1p}$$
 ²⁶F* \longrightarrow ²⁵F + n (+ γ)

M. Vandebrouck, A. Lepailleur, O. Sorlin et al., submitted to PRC

2 resonances observed for the system $(^{25}F+n)$

N. Frank et al., PRC 84, 037302(2011)

l_n

Results

²⁷Ne
$$\xrightarrow{-1p}$$
 ²⁶F* \longrightarrow ²⁵F + n (+ γ)

M. Vandebrouck, A. Lepailleur, O. Sorlin et al., submitted to PRC

- **2 resonances** observed for the system (²⁵F+n)
- Study of the width $\Gamma_r(E)$ of the resonances Comparison to Γ_{sp} : $\Gamma_r(E) = \sum_{l_n} C^2 S \Gamma_{sp}(l_n, E)$ Resonance 350 keV mainly $l_n = 2$

Resonance 1 at 350 keV: $\Gamma_r = 570 \pm 480$ keV $\Gamma_{sp}(l_n=0) = 3080$ keV $\Gamma_{sp}(l_n=2) = 74$ keV

²⁷Ne
$$\xrightarrow{-1p}$$
 ²⁶F* \longrightarrow ²⁵F + n (+ γ)

M. Vandebrouck, A. Lepailleur, O. Sorlin et al., submitted to PRC

Resonance 1 at 350 keV: $\Gamma_r = 570 \pm 480$ keV $\Gamma_{sp}(l_n=0) = 3080$ keV $\Gamma_{sp}(l_n=2) = 74$ keV

Resonance 2 at 1750 keV : $\Gamma_r = 4200 \pm 2500$ keV $\Gamma_{sp}(l_n=0) = 7941$ keV $\Gamma_{sp}(l_n=2) = 2966$ keV

- **2 resonances** observed for the system (²⁵F+n)
- Widths obtained assuming "simple Breit-Wigner" Comparison to Γ_{sp} : $\Gamma_r(E) = \sum_{l_n} C^2 S \Gamma_{sp}(l_n, E)$ Resonance 350 keV mainly $l_n = 2$ Resonance 1750 keV mix $l_n = 0$ and $l_n = 2$

Comparison to the models

Conclusion

- Study of the **unbound states** in ²⁶**F** populated in ²⁷Ne(-1p)²⁶**F** reaction using the **R3B/LAND** setup
- Identification of the 3⁺ at 1.4 MeV and several contributions at higher energy

