

Lola Cortina for the R³B

NUSTAR Annual Meeting, Darmstadt March 1st 2017

R³B in NUSTAR

Reactions with Relativistic Radioactive Beams

→Secondary beams at 700 A.MeV
→Fixed target reactions
→Large Acceptance Dipole Magnet
→Very performant detectors: beam, fragment, gamma, Light charge particles and neutrons

Versatile program

- \rightarrow NN correlations and the nuclear force
- \rightarrow nuclear structure far from stability
- \rightarrow nuclear dynamics: fission
- \rightarrow EoS for high-density neutron-rich matter
- \rightarrow in-medium excitation of baryon resonances \rightarrow strange matter: hypernuclei

R³B in numbers

- •~ 230 collaborators
- •~ 15 countries
- •~ 50 Institutes

- Working groups are the collaboration motor
- Technical Board meets regularly \rightarrow videoconferences once per month
- Collaboration meeting \rightarrow twice a year (+ NUSTAR events)
- Collaboration Board \rightarrow twice a year

R³B Layout

R³B TDR's

approved	submitted	in preparation	Phase 2
6	2	3	1

Q-Triplet, NeuLAND, CALIFA-barrel, CALIFA -forward endcap, GLAD, tracking detectors

Nustar DAQ \rightarrow submitted November 2016 Active target \rightarrow submitted September 2015 ECE comments received

Si tracker \rightarrow expected March 2017 Vacuum Systems \rightarrow expected July 2017 Infrastructure \rightarrow September 2017

High resolution Spectrometer \rightarrow expected May 2018

GLAD welcome to Cave C

H. Simon on behalf of GLAD WG

GLAD

Large aperture: horizontal (entrance: 80 cm, exit: 1,2 m), vertical (entr. 1 m, exit 4 m)

Superconducting magnet: 5 Tm (fringe field at 30 cm 20 mT)

Dimensions: length 3,5 m; width 7 m; heigth 4 m; weight 50 Tons

Target area

Si - Tracker

CALIFA calorimeter

Si- Tracker

Si- Tracker

major funding from: -STFC, University of Liverpool UK

- Light-charged particles energy and multiplicity.
- Precise tracking and vertexing.
- Double-sided micro-strip Si sensors wire bounded to a custom made ASIC.
- **18 detector ladders** in two conical layers 6+12.
- Strip pitch 50 mm, strip width 38 mm.
- Sensitive area 5600 cm².
- 912 ASICs equi. 116736 channels.
- Operated in vacuum

Si- Tracker

Construction plans

TDR draft available end on March 2017

Mechanical assemby and ladder mounting + cooling system @Daresbury cleaning room

Readout system testing on progress

- \rightarrow Tests completed early 2018
- \rightarrow Moving to GSI requires infrastructure , conditioning

For 2018 -2019 Full system available at CAVE C

CALIFA

Photo Peak Eff.	40% (up to E_{γ} =15 MeV projectile frame)
Calorimeter for HE LCP	200-700 MeV in lab system
∆E/E	~5-6% (FWHM at Eg=1 MeV) , ~ 3% forward
LCP resolution	~2% (stopped particles), ~ 5% (punch through)

Design recently finalised

major funding from:

-USC IEM, Uvigo Spain -ULund, Chalmers Sweden -TUM, TUD Germany -Dubna Russia

CALIFA

- External structure 3.5 x 4 m
- Detector volume ~ 1.3 m³
- Detector weight ~ 2.5 Tm
- 2528 detection units

	Barrel	Endcap		
		iPhos	CEPA	
Scintillator	CsI(Tl)	CsI(Tl)	LaBr/LaCl	
Geom.	11	16	6	
Crys. Len (cm)	15-22	22	4/7	
Polar cov.	7-20°	20-43°	43-140°	
Read-out	LAAPD	LAAPD	PM/SiPM	
Dete.chan.	1952	480	96	
Elec. chan.	1952	960	96	
Weight (Kg)	~ 1500	~ 550	~ 50	
Volume (cm ³)	285.000	90.000	11.000	

CALIFA

CALIFA: 2016-17 challenges

• External mechanical structure

- Adaptation of readout for Endcap
- iPhos

EPA

PA MPRC-16 (Mesytec) \rightarrow 16 channels splitted in two branches (high and low gain) \rightarrow Prototype exists Readout : Febex4 \rightarrow ADC @ 100 MHz \rightarrow available

1 GHz ADC \rightarrow based on the DRS4 switch capacitor (by PSI) \rightarrow expected spring 2017 Fine adjustment iPhos/CEPA

Modification of the inner rings in the iPhos \rightarrow 16 fold to 8 fold ring

CEPA mechanical support

CALIFA: 2016-17 experiments

November 2016 @ Lisbon: Benchmarking CALIFA with high-energy mono-energetic photons

Fall 2017 @ Krakow:

Benchmarking CALIFA with highenergy mono-energetic protons Populate resonances above 13 MeV in ²⁸Si by means of the ${}^{27}Al(p,\gamma){}^{28}Si$ reaction.

Measured photons of about 9 and 12 MeV \rightarrow benchmark the reconstruction algorithms for CALIFA at high energies.

Calibration of individual crystals up to 6.1 MeV by means of ${}^{19}F(p,\alpha){}^{16}O$ reaction \rightarrow study of calibration impact on high-energy

photon

CALIFA: construction plan

• **Barrel** \rightarrow distributed construction

For 2018 1024 (1952) channels : CsI(Tl) +LAAPD Intermediate Skeleton (CF) + Tiles Analogue PA: MPRC-32 ad-hoc Readout : Febex3B Demonstrator frame

Endcap → design recently validated start tendering process

For 2018 -2019 224 (480) channels : CsI(Tl) +LAAPD Intermediate Skeleton (CF) + Tiles Analogue PA+ readout Febex4 1 CEPA Sector (rest 2019)

NeuLAND

Efficiency 0.2-1.0 GeV n	> 90%
Multi-hit	Up to 5 n
Invariant mass resolution	∆E < 20 keV at 100 keV above threshold

-full active detector using RP/BC408 -face size 250x250 cm² -active depth 300 cm -3000 scintillator bars + 6000 PMTs -32 tons $-\sigma_{x,y,z} \approx 3$ cm and $\sigma_t < 150$ ps

major funding from:

- GSI Darmstadt, TU Darmstadt. Univ. Frankfurt, Univ. Köln
- PNPI St. Petersburg

NeuLAND: Building blocks

Each double-plane is equipped with all auxilliaries, allowing for independent use

NeuLAND: Real Double planes

NeuLAND @ RIKEN

Demonstrator (4dp's) fully functional,

- IMPACT campaign 7Li(p,n)
 - \rightarrow 1n efficiency at 110, 250 MeV,
- 2015 ²⁸O experiment
- 2016
- $S\pi$ rit TPC EOS experiment ³¹Ne C. breakup & knock-out Removal react, around N=16 shell closure Lifetime ²⁶O ground-state

Dipole response of neutron-rich Ca isotopes(T.Kobayashi -Y.Togano) 2017 Dipole response of dripline nuclei (T.Aumann - T.Nakamura): ^{6,8}He, ²⁴O, ²⁹F Tetra-neutron system: 8 He(p,p α)4n (S.Paschalis, D.Rossi - S.Shimoura) ⁸He(p,2p)⁷H (K.Kisamori- F.M.Marqués)

NeuLAND

backtransport to GSI

NeuLAND@GSI

continuation of production (7 dp's as of today) implementation of new electronics and HV system

For 2018 12 double planes (40% detector) ready for beam @ GSI

Different detectors for different challenges

- Before target 1 LOS(plastic)+ Silicon+ Fiber detectors
- After target (Between CALIFA and GLAD) 1 Silicon or 1 LOS (Plastic)
- Heavy Fragment arm: 2 plane Fiber detectors → Fiber 4 (41x24 cm², 200 µm) and Fiber 5 (80x80 cm², 500 µm) + TOF wall (120x80 cm², 5 mm plastic paddles)
- Proton Arm Spectrometer : Strawtubes (210x100 cm²)+ TOF wall (1 cm plastic paddle)

Silicon detectors

X1 model (Bicron)

 Double side detectors, (only front side is segmented → 32 channel and readout both ends → position)

New type of PSP tested (X5 Bicron)

- 32 strips on each side
- 128 channels in total

For 2018 Set of X5 detectors

major funding from: TU Darmstadt Germany

Tests in 2016 with Xe and C beams

	Energy	Position		
Resolution X5	2.3%	Front 200-800 μm Back 120-140 μm		
requirement	0.5%	100 µm		

- Too large current drawn during beam time
- Detectors sent back to producer for diagnostics

Fiber detectors

Use of 200 $_{\mu}\text{m}$ square fiber too difficult for large detectors

- 200 μm round fiber for FIB4 (in vacuum)
- 500 μm round fiber for FIB5

major funding from: TU Darmstadt Germany

- Fiber bundling will be necessary to reduce number of read-out channels
- Read-out: GEMEX or FPGA-TDC based read-out
- Sensors:
 - FIB4: MPPCs (SensL vs.Hamamatsu) (or MAPMT μ-shielded)
 - FIB5: Multi-Anode PMT

For 2018 FIB4 41x24 cm² FIB5 80x80 cm²

ToF wall

2 planes with 3 mm plastic scintillator, EJ-204.
2 planes with 5 mm plastic scintillator
Each plane→ 44 scintillators 800x27x3(5) mm³

Z separation	σ _E < 1%
A separation	σ _t < 38 ps
Rate	1 MHz

- Size: 120 x 100 cm²
- No light guide, PMT R8619 coupled directly to scintillator
- Movable holding structure to sweep TOF wall across beam

major funding from: TU Darmstadt

Tests in 2016 with Xe and C beams at 600 AMeV (U beam at 300 AMeV).

Prototype detector

- 4 planes
- 6 scintillator per plane.
- Layers 1 and 2 \rightarrow 3 mm scintillators.
- Layers 3 and 4 \rightarrow 5 mm scintillators.
- Wrappings: Al foil, black foil
- No light guide

Results should be considered as lower limits

Energy precision $\sigma_E < 0.65\%$ (goal < 1%). Time resolution of $\sigma_t = 11$ ps (goal < 38 ps) For 2018 ToF wall 4 planes 120x80 cm²

Proton Arm Spectrometer

- Large area detectors: 2.1 x 1.0 m²
- 2000 straws of 10 mm diameter
- 4 planes, 2 x, 2 -y-oriented.

major funding from: Russian in kind contribution (FAIR)

Efficiency	> 95 %
500-1000 GeV p	

The first plane (x) will contain mylar or kapton straws, all others will be thin Al tubes.

Some concerns regarding the readout

- Basic requirement: TDC with time resolution better than 1 ns
- Must fit into R3B DAQ concept \rightarrow GSI developments

Tests and prototypes

Consists of **96** ultrathin tubes

For 2019-2020 1 STW unit (vertical Al tubes)

Active Target

- \Rightarrow well suited as alternative technique to EXL for:
 - short lifetimes ($T \le 1$ sec)
 - low RIB intensities ($\leq 10^5 \text{ sec}^{-1}$)

TDR submitted 2015 in review

Feasibility study 2014 and 2016 (Ni and Xe) For 2018 Prototype ready - $(\alpha, \alpha\gamma) \rightarrow$ need a part of CALIFA - proto elastic \rightarrow new set up

Simulation and analysis

R3BRoot https://www.r3broot.gsi.de

- Based on the Virtual Monte Carlo (VMC) concept using Geant4 and Geant3.
- UCESB for the data unpacking and sorting \rightarrow possible online extensions.
- Includes parameter handling, event display, ROOT file and data management...

	LOS	PSPX	TOFd	NeuLAND	Si Tracker	CALIFA	Straw tubes
Mapped					***	***	
CAL							
НІТ							

Mapped - raw data delivered from Ucesb to R3BRoot and stored CAL - calibrated data: time [ns], charge [MeV] HIT - physical hits, time [ns], charge [MeV], position [cm], all synchronized

2nd R3BRoot workshop 7-9 March 2017 at GSI.

Experimental Program- FAIR Phase 0

- The R3B collaboration has done a enormous work to design and build this unique setup (~ 15 years)
- Very intense activity to be ready for 2018 -2019 experiments
 - Construction of the detectors
 - Development of common simulation and analysis tools
 - Discussions to define the experimental program \rightarrow Internal "PAC" next April
 - Conditioning of the CAVE C :
 - Cleaning of the CAVE C
 - Hosting GLAD → related infrastructure (QPU, Cryo -plant, cryo -lines, current, Power supply)
 - Vacuum tests in the big GLAD chamber and Fragment tube (5 x 10⁻⁶ mbar)

Cave C- FAIR Phase 0

D. Köerper on behalf of Infrastructure WG

Cave C- FAIR Phase 0

Future looks promissing Thanks for your attention

m