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Halo nuclei

Halo nuclei
Exotic nuclear structures are found far from stability
In particular halo nuclei with
peculiar quantal structure :

Light, n-rich nuclei
Low S n or S 2n

Exhibit large matter radius
due to strongly clusterised structure :
neutrons tunnel far from the core and form a halo

One-neutron halo
11Be ≡ 10Be + n
15C ≡ 14C + n
Two-neutron halo
6He ≡ 4He + n + n
11Li ≡ 9Li + n + n

Noyau stable

Noyau riche en neutrons

Noyau riche en protons

Noyau halo d’un neutron

Noyau halo de deux neutrons

Noyau halo d’un proton-N

6Z

n

1H 2H 3H

3He 4He 6He 8He

6Li 7Li 8Li 9Li 11Li

7Be 9Be 10Be 11Be 12Be 14Be

8B 10B 11B 12B 13B 14B 15B 17B 19B

9C 10C 11C 12C 13C 14C 15C 16C 17C 18C 19C 20C 22C

12N 13N 14N 15N 16N 17N 18N 19N 20N 21N 22N 23N

13O 14O 15O 16O 17O 18O 19O 20O 21O 22O 23O 24O

Proton haloes are possible but less probable : 8B, 17F



Halo nuclei

Reactions with halo nuclei

Halo nuclei are fascinating objects
but difficult to study [τ1/2(11Be)= 13 s]
⇒ require indirect techniques, like reactions

Elastic scattering

Breakup ≡ dissociation of halo from core
by interaction with target

Need good understanding of the reaction mechanism
i.e. an accurate theoretical description of reaction
coupled to a realistic model of projectile



Reaction model

Framework
Projectile (P) modelled as a two-body system :
core (c)+loosely bound neutron (n) described by
H0 = Tr + Vcn(r)

Vcn adjusted to reproduce
bound state Φ0

and resonances

Target T seen as
structureless particle

c

n
P

T

R

r

P-T interaction simulated by optical potentials
⇒ collision reduces to three-body scattering problem :

[TR + H0 + VcT + VnT ] Ψ(r, R) = ET Ψ(r, R)
with initial condition Ψ(r, R) −→

Z→−∞
eiKZ+···Φ0(r)

Various techniques to solve this equation :
CDCC, eikonal, time-dependent approach. . .



Reaction model CDCC

CDCC
The wave function is expanded on the projectile eigenstates :
Ψ(r, R) =

∑
i χi(R)Φi(r) with H0Φi = εiΦi

The c-n continuum is discretised⇒ set of coupled equations
6He+Zn elastic scattering @ 13.6 MeV

[M. Rodrı́guez-Gallardo et al. PRC 77, 064609 (2008)]



Reaction model Eikonal approximation

Eikonal approximation
Factorise Ψ(r, R) = eiKZΨ̂(r, b,Z)
and assume ∆Ψ̂ � K ∂

∂Z Ψ̂

⇒ simplifies the equation to be solved

8B+Pb→ 7Be+X @ 44AMeV
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Reaction model Time-dependent approach

Time-dependent approach
Assume a semic-classical approximation : R→ R(t)
⇒ time-dependent Schrödinger equation

15C+Pb→14C+n+Pb @ 67AMeV
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Optical potential choice

However. . .
. . . results depends on the optical potentials VcT and VnT

11Be+C→10Be+n+C @ 67AMeV
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Since the core c is itself exotic, VcT is usually poorly known
⇒ need more reliable optical potentials



Optical potential choice

Optical potentials from first principles
Rotureau et al. have built a nucleon-nucleus optical potential
as the self-energy of a Coupled-Cluster calculation

[J. Rotureau et al. arXiv :1611.04554]

n+16O @ 10 MeV
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FIG. 6. Real part of Vint(r) in the neutron s-wave at E=10
MeV. Results are shown for at Nmax = 8 − 14. For illustra-
tion purpose, we also show the results obtained with the phe-
nomenological potential from Ref. [17].

body optical-model-type Schrödinger equation. The vari-
ations of the optical potential with the model space for
small values of r do not impact the behavior of Vint(r).
For illustration, Fig. 6 also shows a result for Vint(r) ob-
tained using a phenomenological potential based on a
Woods-Saxon form factor [17].

So far, we have only presented results for the diagonal
part of the optical potential. Figure 7 shows a contour
plot for the nonlocal neutron s-wave optical potential.
Introducing the relative coordinate rrel = r − r′ and the
center-of-mass coordinate R = (r+ r′)/2 we plot the op-
tical potential as a function of rrel at fixed R = 1 fm in
Fig. 8. We can see that the full width at half maximum is
about 2.2 fm. Clearly, this potential is very different from
a model of a Dirac delta function in rrel and exemplifies
the degree of nonlocality which is predicted microscop-
ically. We note that due to the non-Hermitian nature
of the coupled-cluster method, the potential V (r, r′) is
slightly non-symmetric in r and r′, and as a consequence
V (R, rrel) is not quite an even function of rrel. In Figs. 7,
and 8 the energy is E = 10 MeV and results were ob-
tained for Nmax = 14 and 50 discretized shells for the
s-wave along a contour in the complex plane.

Calculations of the optical potential in other partial
waves follow along the same lines. For illustration, we
show a contour plot of the d3/2-wave potential in Fig. 9.
Results are shown for E = 10 MeV at Nmax = 14 and 50
discretized shells for the d3/2-wave along a complex con-
tour. As in other cases, we take the limiting value η = 0.

We finally turn to the imaginary part of the optical po-
tential. The imaginary part describes the loss of flux due
to inelastic processes. For most nuclei, and particularly
for heavier systems, there are many compound-nucleus
resonances above the particle threshold, and absorption

V (r,r’,E) [Mev fm
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FIG. 7. Contour plot of the real part of the neutron s-wave
potential V (r, r′, E) for Nmax = 14 and 50 discretized s-wave
shells at E = 10 MeV.

is known to be significant. Our results for the imaginary
part of the potential, along the diagonal r = r′ are shown
in Fig. 10 for the neutron s1/2 wave at E = 10 MeV. The
model space consists of Nmax = 10 and 50 discretized
shells for the s-wave. We consider various values of η.
In the limit η = 0, the imaginary part of the potential
is very small, and this is true for the whole range of en-
ergies up to E = 10 MeV. As one can see in Fig. 10,
as η decreases to zero, the imaginary part also decreases
and becomes very small for η = 0. We observed the same
qualitative behavior for all other considered partial wave,
up to d5/2, a result that does not change when the model
space increases.

To further illustrate our difficulties with the imaginary
part, we plot in Fig. 11 the imaginary volume integral J lW

J lW = 4π

∫
drr2

∫
drr′2ImΣ′l(r, r

′;E) (32)

for the optical potential in the s-wave, taking a model
space with Nmax = 14 and 50 discretized s-waves.

In order to understand these results, we recall that the
compound states that contribute to the flux removal from
the elastic channel consist of a high number of particle-
hole excitations and are usually described by stochastic
approaches [55]. However, the coupled-cluster approach
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FIG. 8. Neutron s-wave optical potential at E=10 MeV plot-
ted as V (R + rrel/2, R − rrel/2) at fixed R = 1/2 fm. Here
Nmax = 14 and 50 discretized s-wave shells are included in
the single-particle basis.

to the optical potential presented in this paper employs
only 1p-1h and 2p-2h excitations and is thus limited to
absorption on resonant states that are dominated by 1p-
1h excitations. In our example of scattering off 16O, its
Jπ = 3− state (at about 6 MeV of excitation energy) is
thought to be of 1p-1h structure. With the NNLOopt in-
teraction, we computed this state using EOM-CCSD and
found it at about 10 MeV of excitation. Another relevant
excited state in 16O is the first excited 0+ state also at
≈ 6 MeV, which is known to have a strong 4p−4h config-
uration. In our coupled cluster calculations this state is
above 10 MeV. In fact, there are no other excited states
below 10 MeV. In general, positive parity states of 16O
are dominated by 2p-2h excitations, and are therefore not
well described in EOM-CCSD. Thus, from this analysis,
we conclude that it is not possible to produce significant
absorption at low-energies for neutron scattering on 16O
due to the employed low-order cluster truncations in our
EOM-CCSD and PA/PR-EOM CCSD approximations.

One path forward is to introduce a phenomenologi-
cal and energy dependent width in the Green’s function,
to account for higher-order correlations such as 3p-2h
and 2p-3h not included in PA/PR-EOM CCSD [51]. As
shown in Fig.10, this will increase the absorption at lower
energies. This would also allow to account for collective
states which may exist in nature and which cannot be
reproduced in the coupled cluster approach at the CCSD
level.

Finally we show, in Fig. 12, the neutron elastic scatter-
ing phase shift obtained with the optical potential in the
s and d partial waves, as a function of the model space 1.
We want to emphasize here that calculations for higher

1 In principle, the phase shift should be obtained by solving the
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FIG. 9. Contour plot of the real part of the neutron d3/2-wave
potential for Nmax = 14 at E = 10 MeV.

partial waves proceed similarly and are straightforward.
We find that, for Nmax = 14 all calculated phase shifts
have converged (all calculations here are done with 50
discretized shells). The sharp rise of the phase shift in
the d3/2 partial wave is the standard signature of the res-

onance Jπ = 3/2+ in 17O, which is numerically predicted
to be at E = 2.26− i0.12 MeV from our PA-EOM CCSD
calculations (see Table I).

IV. CONCLUSIONS

We constructed microscopic nuclear optical potentials
by combining the Green’s function approach with the

Schrödinger Eq. 10 in the relative coordinate, with the reduced
mass µn−16O of the n−16O system. However, with the op-
tical potential being calculated in the laboratory frame (the
Hamiltonian H (2) is defined in the laboratory) a correction
to the reduced mass is needed. This correction is such that
the reduced mass µ′ used to solve the Schrödinger Eq. (10) is
1/µ′ = (1−1/A)/m (cf Eq. 2). Doing so, the bound states of the
optical potential in the d5/2 and s1/2 partial waves correspond to

respectively, the gs and first excited state in 17O obtained with
the PA-EOM CCSD method.

s1/2 d3/2

Highly non-local and energy dependent⇒ difficult to handle

Lacks absorption at low energy



Optical potential choice

Optical potentials from first principles
Rotureau et al. have built a nucleon-nucleus optical potential
as the self-energy of a Coupled-Cluster calculation

[J. Rotureau et al. arXiv :1611.04554]

n+16O @ 10 MeV
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FIG. 10. Imaginary part of the radial (diagonal) optical po-
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for several values of η. Calculations were performed at
Nmax = 14 with 50 discretized s1/2 shells.

coupled-cluster method. For the computation of the
Green’s function, we used an analytical continuation in
the complex energy plane, based on a Berggren basis. Us-
ing the Lanczos method, we expressed the Green’s func-
tion as a continued fraction. The computational cost of a
single Lanczos iteration is similar to that of a PA-EOM-
CCSD calculation, i.e. polynomial in system size, and
thus affordable. The convergence with the number of
Lanczos iterations was demonstrated. The Dyson equa-
tion was then inverted to obtain the optical potential.

In the coupled-cluster singles and doubles approxima-
tion, the optical potential and the neutron elastic scat-
tering phase shifts on 16O converge well with respect to
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FIG. 12. Elastic-scattering phase shifts in the neutron s and
d waves as a function of Nmax. In all cases 50 discretized
Berggren shells are included.

the size of the single-particle basis, for the low partial
waves. The predicted optical potential has a strong non-
locality that is not Gaussian. In addition, we found an
almost vanishing imaginary part of the potential for scat-
tering energies below 10 MeV. This lack of an absorptive
component was attributed to neglected higher-order cor-
relations in the employed coupled-cluster methods.

In the future, we plan to update the NN force currently
used, to one that is able to reproduce charge radii of heav-
ier systems. We also plan to include three-nucleon forces
in the coupled-cluster calculations of the Green’s func-
tions, as well as higher-order correlations in the employed
coupled-cluster methods. We expect this will produce an
increase in the imaginary part of the derived optical po-
tential. Once these improvements are in place, this work
can be extended to other systems (the limitations being
the computational cost associated with the CC calcula-
tions) and to other reaction channels such as transfer,
capture, breakup and charge-exchange. Systematic stud-
ies involving heavier nuclei and consistent calculations
along isotopic chains will provide critical information on
how to extrapolate the optical potential to unknown re-
gions of the nuclear chart.
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Lacks absorption at low energy



Optical potential choice

Double-folding potential
Using a χEFT (N2LO) local in coordinate space
double folded with 16O densities→ optical potential
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Projectile description Ab initio calculation

Usual phenomenological description

In reaction models, projectile ≡ two-body system :

H0 = Tr + Vcn(r),

where Vcn is a phenomenological Woods-Saxon that reproduces the
basic nuclear properties of the projectile (binding energy, Jπ,. . . )

Nowadays ab initio calculations of such exotic nuclei are available
Can we use them within a reaction code ?

But do we need to go that far ?
Breakup reactions are mostly peripheral⇒ probe :

ANC of the ground state
phaseshifts in the continuum

⇒ constrain two-body description by ab initio prediction



Projectile description Ab initio calculation

Stare of the art : ab initio

A recent ab initio calculation of 11Be has been performed
[A. Calci et al. PRL 117, 242501 (2016)]

bound-state splitting, but below Λ3N ¼ 400 MeV the influ-
ence of the 3N interaction is too strongly reduced such that
the spectra approach the pureNN result. On the contrary, the
converged spectrumwith the simultaneously fittedNN þ 3N
interaction, named N2LOSAT [29], successfully achieves the
parity inversions between the 3=2−1 and 5=2

þ resonances and,
albeit marginally, for the bound states. The low-lying spec-
trum is significantly improved and agrees well with the
experiment, presumably due to the more accurate description
of long-range properties caused by the fit of the interaction
to radii of p-shell nuclei. On the other hand, the strongly
overestimated splitting between the 3=2−2 and 5=2− states
hints at deficiencies of this interaction, which might originate
from a too large splitting of the p1=2-p3=2 subshells.
In addition to the resonances observed in the experiment,

all theoretical spectra predict a low-lying 9=2þ resonance
suggested in Refs. [52,53]. For the N2LOSAT interaction,
the resonance energy is close to the one predicted by the
Gamow shell model [54], although our ab initio calcu-
lations predict a broader width. Another interesting prop-
erty is the position of the 3=2þ resonance that is strongly
influenced by the 2þ1 state of 10Be. For all theoretical
calculations the energies of these correlated states are
almost degenerate, while in the experiment the 2þ1 state
in 10Be is about 470 keVabove the tentative 3=2þ state and
coincides with the 3=2−2 and 5=2− resonances.
Nuclear structure and reaction properties.—Except for

the two bound states, all the energy levels of Fig. 3
correspond to nþ 10Be scattering states. The corresponding
phase shifts obtained with the N2LOSAT interaction are
presented in Fig. 3 (see Supplemental Material for further
details [46]). The overall proximity of the Nmax ¼ 7 and 9
results confirms the good convergence with respect to the
model space. The states observed in 11Be are typically
dominated by a single nþ 10Be partial wave, but the
illustrated eigenphase shifts of the 3=2þ state consist of a
superposition of the 4S3=2 and 2D3=2 partialwaves. The parity
of this resonance is experimentally not uniquely extracted

[1], while all ab initio calculations concordantly predict it to
be positive. The bound-state energies aswell as the resonance
energies andwidths for different interactions and bothmany-
body approaches are summarized in Table I. In the case of the
NN þ 3Nð400Þ interaction, however, the fast 3=2þ phase
shift variation near the nþ 10Beð2þ1 Þ threshold does not
correspond to a pole of the scattering matrix, such that this
state is not a resonance in the conventional sense and a width
could not be extracted reliably. The theoretical widths tend to
overestimate the experimental value, but overall the agree-
ment is reasonable, especially for the N2LOSAT interaction.
Experimentally, only an upper bound could be determined
for the5=2− resonancewidth, and the theoretical calculations
predict an extremely narrow resonance.
Although the bulk properties of the spectrum are already

well described, accurate predictions of observables, such as
electric-dipole (E1) transitions, which probe the structure
of the nucleus, can be quite sensitive to the energies of
the involved states with respect to the threshold. Based on
our analysis, the discrepancies between the theoretical and
experimental energy spectra can be mostly attributed to
deficiencies in the nuclear force. Therefore, it can be
beneficial to loosen the first-principles paradigm to remedy
the insufficiencies in the nuclear force and provide accurate
predictions for complex observables using the structure

FIG. 2. NCSMC spectrum of 11Be with respect to the nþ 10Be threshold. Dashed black lines indicate the energies of the 10Be states.
Light boxes indicate resonance widths. Experimental energies are taken from Refs. [1,51].

FIG. 3. Thenþ 10Bephaseshiftsasafunctionofthekineticenergy
in the center-of-mass frame. NCSMC phase shifts for the N2LOSAT
interaction are compared for two model spaces indicated by Nmax.

PRL 117, 242501 (2016) P HY S I CA L R EV I EW LE T T ER S
week ending

9 DECEMBER 2016

242501-3

Slow convergence
⇒ difficulties to reproduce the shell inversion
⇒ include phenomenology to obtain the correct ordering



Projectile description Ab initio calculation

Ab initio description of 11Be bound states

1
2

+ ground state :
ε 1

2
+ = −0.500 MeV
C 1

2
+ = 0.786 fm−1/2

S1s 1
2

= 0.90
1
2
− bound excited state :
ε 1

2
− = −0.184 MeV
C 1

2
− = 0.129 fm−1/2

S0p 1
2

= 0.85



Projectile description Ab initio calculation

Ab initio description of 10Be-n continuum

Provides the most accurate calculation for the 10Be-n continuum

bound-state splitting, but below Λ3N ¼ 400 MeV the influ-
ence of the 3N interaction is too strongly reduced such that
the spectra approach the pureNN result. On the contrary, the
converged spectrumwith the simultaneously fittedNN þ 3N
interaction, named N2LOSAT [29], successfully achieves the
parity inversions between the 3=2−1 and 5=2

þ resonances and,
albeit marginally, for the bound states. The low-lying spec-
trum is significantly improved and agrees well with the
experiment, presumably due to the more accurate description
of long-range properties caused by the fit of the interaction
to radii of p-shell nuclei. On the other hand, the strongly
overestimated splitting between the 3=2−2 and 5=2− states
hints at deficiencies of this interaction, which might originate
from a too large splitting of the p1=2-p3=2 subshells.
In addition to the resonances observed in the experiment,

all theoretical spectra predict a low-lying 9=2þ resonance
suggested in Refs. [52,53]. For the N2LOSAT interaction,
the resonance energy is close to the one predicted by the
Gamow shell model [54], although our ab initio calcu-
lations predict a broader width. Another interesting prop-
erty is the position of the 3=2þ resonance that is strongly
influenced by the 2þ1 state of 10Be. For all theoretical
calculations the energies of these correlated states are
almost degenerate, while in the experiment the 2þ1 state
in 10Be is about 470 keVabove the tentative 3=2þ state and
coincides with the 3=2−2 and 5=2− resonances.
Nuclear structure and reaction properties.—Except for

the two bound states, all the energy levels of Fig. 3
correspond to nþ 10Be scattering states. The corresponding
phase shifts obtained with the N2LOSAT interaction are
presented in Fig. 3 (see Supplemental Material for further
details [46]). The overall proximity of the Nmax ¼ 7 and 9
results confirms the good convergence with respect to the
model space. The states observed in 11Be are typically
dominated by a single nþ 10Be partial wave, but the
illustrated eigenphase shifts of the 3=2þ state consist of a
superposition of the 4S3=2 and 2D3=2 partialwaves. The parity
of this resonance is experimentally not uniquely extracted

[1], while all ab initio calculations concordantly predict it to
be positive. The bound-state energies aswell as the resonance
energies andwidths for different interactions and bothmany-
body approaches are summarized in Table I. In the case of the
NN þ 3Nð400Þ interaction, however, the fast 3=2þ phase
shift variation near the nþ 10Beð2þ1 Þ threshold does not
correspond to a pole of the scattering matrix, such that this
state is not a resonance in the conventional sense and a width
could not be extracted reliably. The theoretical widths tend to
overestimate the experimental value, but overall the agree-
ment is reasonable, especially for the N2LOSAT interaction.
Experimentally, only an upper bound could be determined
for the5=2− resonancewidth, and the theoretical calculations
predict an extremely narrow resonance.
Although the bulk properties of the spectrum are already

well described, accurate predictions of observables, such as
electric-dipole (E1) transitions, which probe the structure
of the nucleus, can be quite sensitive to the energies of
the involved states with respect to the threshold. Based on
our analysis, the discrepancies between the theoretical and
experimental energy spectra can be mostly attributed to
deficiencies in the nuclear force. Therefore, it can be
beneficial to loosen the first-principles paradigm to remedy
the insufficiencies in the nuclear force and provide accurate
predictions for complex observables using the structure

FIG. 2. NCSMC spectrum of 11Be with respect to the nþ 10Be threshold. Dashed black lines indicate the energies of the 10Be states.
Light boxes indicate resonance widths. Experimental energies are taken from Refs. [1,51].

FIG. 3. Thenþ 10Bephaseshiftsasafunctionofthekineticenergy
in the center-of-mass frame. NCSMC phase shifts for the N2LOSAT
interaction are compared for two model spaces indicated by Nmax.

PRL 117, 242501 (2016) P HY S I CA L R EV I EW LE T T ER S
week ending

9 DECEMBER 2016

242501-3

Idea : constrain the 10Be-n potential in the reaction code
to reproduce ab initio bound states ANC and δl j.



Projectile description Effective model

10Be-n potential

Replace the 10Be-n interaction by an effective potential
in each partial wave

Use the spirit of halo EFT : separation of scales
in energy or in distance
Work in collaboration with Hammer (TUD) and Philips (U. Ohio)

Use a narrow Gaussian potential

Vl j(r) = V0 e−
r2

2σ2 + V2 r2e−
r2

2σ2

Fit V0 and V2 to reproduce εl j, and Cl j (bound states)
or Γl j for resonances

σ = 1.2, 1.5 or 2 fm is a parameter used to evaluate the sensitivity
of the calculations to this effective model



Projectile description Effective model

s1
2 : potentials fitted to ε 1
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Wave functions : same asymptotics but different interior
δs 1

2
: all effective potentials are in good agreement with ab initio
up to 1.5 MeV (same effective-range expansion)

Similar results obtained for p1
2 and d 5

2 partial waves
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p3
2 and d 3

2 : potentials fitted to εres and Γ
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Large variation in δ obtained by effective potentials
Broad potential (σ = 2 fm) cannot reproduce correct behaviour
Fair agreement with ab initio results up to 2.5 MeV
10Be core excitation @ 3.4 MeV not described in effective model
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11Be+Pb→10Be+n+Pb @ 69AMeV

Total breakup cross section
and p contributions
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Major differences in p3/2 partial wave ; due to differences in δp3/2

Broad potential (σ = 2 fm) produces unrealistic p3/2 contribution
Excellent agreement with experiment
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11Be+C→10Be+n+C @ 67AMeV
Total breakup cross section
and dominant contributions
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All potentials produce similar breakup cross sections
In nuclear breakup, resonances play significant role
Order of magnitude of experiment well reproduced
But resonant breakup not correctly described
due to short-range details missing in the effective model
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Effect of core-excitation in resonant breakup
11Be+C→10Be+n+C @ 67AMeV
computed in an extended DWBA model including core excitation
[A. Moro & J.A. Lay, PRL 109, 232502 (2012)]

interference between the valence and core excitation
mechanisms is crucial to account for the correct shape of
the oscillations.

It is enlightening to consider separately the contribution of
the valence and core excitation amplitudes, Eqs. (3) and (4).
These are depicted in Fig. 2 for the PRM. In this plot, the
calculations have been convoluted with the experimental
angular resolution [4] for a more meaningful comparison
with the data. As anticipated, the 5=2þ resonance is mainly
populated by the valence excitation mechanism, due to its
dominant 10Beð0þÞ configuration,whereas for the 3=2þ state
the dynamic core excitation mechanism is the dominant one.
It is also seen that both contributions are out of phase, and the
interference between them is very important. In fact, none of
them separately is able to reproduce by itself the position of
the maxima and minima of the data, whereas their coherent
sum (solid line) reproduces very well this pattern. This result
illustrates very nicely the delicate interplay between the
valence and core excitation mechanisms in the breakup of a
deformed halo nucleus, like 11Be. Note that the weak con-
tribution of the valence mechanism in the 3=2þ case is a
consequence of the small spectroscopic factor associated
to the j0þ � d3=2i configuration (see Table I). This fact

explains also that this resonance is very weakly populated
in transfer reactions, such as 10Beðd; pÞ11Be [32],making the
extraction of spectroscopic information difficult from these
experiments. In these cases, the approach presented in this

work, based on the analysis of breakup reactions, provides a
powerful alternative to access this information.
Conclusions.—In conclusion, we have studied the inter-

play between the valence and core excitation mechanisms
in the breakup of halo nuclei using and using a recently
proposed extension of the DWBA method. We have shown
that the presence of core admixtures in the initial and final
states has a sizable impact in the interference pattern of the
breakup cross section and hence a high sensitivity on the
underlying structure model of the halo nucleus. This effect
has been evidenced for the first time in the scattering of
11Be on 12C at 70 MeV/nucleon, where we have shown that
the inclusion of these core excitation effects improves
significantly the agreement with the data [4] and provides
very valuable spectroscopic information, which would be
very difficult to extract from other methods. Finally, we
emphasize that, although the calculations have been pre-
sented for the 11Be nucleus, we do expect these effects to
be important in other relevant cases, such as in the breakup
of the odd carbon isotopes 15;17;19C.
We are grateful to Dr. Y. Kanada En’yo for providing us

the 10Be microscopic densities and to T. Nakamura for his
help regarding the 11Beþ 12C data and the convolution
with the experimental resolution. This work has been
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FIG. 2 (color online). Valence (dashed line) and core (dot-
dashed line) contributions to the breakup of the 1.78 and
3.41 MeV resonances populated in the 11Beþ 12C reaction at
70 MeV/nucleon, using a particle-core description of the 11Be
nucleus. The solid line is the coherent sum of both contributions.
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Breakup due to the excitation
of the valence neutron and
of the core are considered
Both are needed to reproduce the
oscillatory pattern of experiment
Core excitation dominates the 3

2
+

resonant breakup
Confirms the missing short-range
details in our effective model
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Summary and prospect
Exotic nuclei studied mostly through reactions

I elastic scattering
I breakup

Mechanism of reactions with halo nuclei understood
but there remain uncertainties :

I optical potential choice
I description of the projectile

Optical potential can be built
I from first principles
⇒ strongly non-local and energy dependent

I by folding χEFT interactions
⇒ simpler to use (predictive power ?)

Ab initio models too expensive to be used in reaction codes
⇒ include the predictions that matter in effective model

I efficient way to include the significant degrees of freedom
I enables us to estimate the influence of omitted mechnisms
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p1
2 : potentials fitted to ε 1

2
− and C 1

2
−

Potentials fitted to ε0p 1
2

= −0.184 MeV and C0p 1
2

= 0.129 fm−1/2

Excited-state wave function
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Ab initio

p1/2 phaseshifts
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Wave functions : same asymptotics but different interior
Larger variation in δp 1

2
obtained by effective potentials

Fair agreement with ab initio results up to 1 MeV
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d 5
2 : potentials fitted to εres
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+ and Γ 5
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Identical δd 5
2

up to 1.5 MeV for all potentials
up to 5 MeV for the narrow potentials (σ = 1.2 and 1.5 fm)
Good agreement with ab initio results up to 2 MeV
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11Be+Pb→10Be+n+Pb @ 69AMeV

 0.01

 0.1

 1

 10

 100

 1000

 0  1  2  3  4  5  6

d
σ

b
u
/d

Ω
 (

b
/s

t)

θ (deg)

s1/2

p1/2

p3/2

d3/2

d5/2

σ=1.2fm
σ=1.2fm (σ=1fm in p3/2)

σ=1.5fm
σ=2fm

Exp. (E=0-1 MeV)

Good agreement with experiment
All potential provide similar cross sections
(σ = 2 fm slightly lower)


	Halo nuclei
	Reaction model
	CDCC
	Eikonal approximation
	Time-dependent approach

	Optical potential choice
	Projectile description
	Ab initio calculation
	Effective model

	Summary

