Challenges in Nuclear-Reaction Theory

Pierre Capel

1st March 2017

2 Reaction model

- CDCC
- Eikonal approximation
- Time-dependent approach
- Optical potential choice
- Projectile description
 - Ab initio calculation
 - Effective model

Halo nuclei

Exotic nuclear structures are found far from stability In particular halo nuclei with peculiar quantal structure :

- Light, n-rich nuclei
- Low S_n or S_{2n}

Exhibit large matter radius

due to strongly clusterised structure :

neutrons tunnel far from the core and form a halo

One-neutron halo

¹¹Be \equiv ¹⁰Be + n ¹⁵C \equiv ¹⁴C + n Two-neutron halo ⁶He \equiv ⁴He + n + n ¹¹Li \equiv ⁹Li + n + n

Proton haloes are possible but less probable : ⁸B, ¹⁷F

Reactions with halo nuclei

Halo nuclei are fascinating objects but difficult to study $[\tau_{1/2}(^{11}Be)= 13 \text{ s}]$ \Rightarrow require indirect techniques, like reactions

Elastic scattering

Breakup ≡ dissociation of halo from core by interaction with target

Need good understanding of the reaction mechanism i.e. an accurate theoretical description of reaction coupled to a realistic model of projectile

Framework

Projectile (P) modelled as a two-body system : core (c)+loosely bound neutron (n) described by

- $H_0 = T_r + V_{cn}(\boldsymbol{r})$
- V_{cn} adjusted to reproduce bound state Φ_0 and resonances

Target T seen as
structureless particleTP-T interaction simulated by optical potentials \Rightarrow collision reduces to three-body scattering problem :

 $[T_R + H_0 + V_{cT} + V_{nT}] \Psi(\mathbf{r}, \mathbf{R}) = E_T \Psi(\mathbf{r}, \mathbf{R})$ with initial condition $\Psi(\mathbf{r}, \mathbf{R}) \xrightarrow[Z \to -\infty]{} e^{iKZ + \cdots} \Phi_0(\mathbf{r})$

Various techniques to solve this equation : CDCC, eikonal, time-dependent approach...

CDCC

The wave function is expanded on the projectile eigenstates : $\Psi(\mathbf{r}, \mathbf{R}) = \sum_{i} \chi_i(\mathbf{R}) \Phi_i(\mathbf{r})$ with $H_0 \Phi_i = \epsilon_i \Phi_i$

The *c*-n continuum is discretised \Rightarrow set of coupled equations

[M. Rodríguez-Gallardo et al. PRC 77, 064609 (2008)]

Eikonal approximation

Factorise $\Psi(\mathbf{r}, \mathbf{R}) = e^{iKZ}\widehat{\Psi}(\mathbf{r}, \mathbf{b}, Z)$ and assume $\Delta\widehat{\Psi} \ll K \frac{\partial}{\partial Z}\widehat{\Psi}$ \Rightarrow simplifies the equation to be solved

Time-dependent approach

Assume a semic-classical approximation : $R \rightarrow R(t)$ \Rightarrow time-dependent Schrödinger equation

[H. Esbensen PRC 77, 024608 (2007)]

However...

... results depends on the optical potentials V_{cT} and V_{nT}

[P. C. et al. PRC 70, 064605 (2004)]

Since the core *c* is itself exotic, V_{cT} is usually poorly known \Rightarrow need more reliable optical potentials

Optical potentials from first principles

Rotureau *et al.* have built a nucleon-nucleus optical potential as the self-energy of a Coupled-Cluster calculation

[J. Rotureau et al. arXiv :1611.04554]

Highly non-local and energy dependent ⇒ difficult to handle

Optical potentials from first principles

Rotureau *et al.* have built a nucleon-nucleus optical potential as the self-energy of a Coupled-Cluster calculation

[J. Rotureau et al. arXiv :1611.04554]

Highly non-local and energy dependent ⇒ difficult to handle
Lacks absorption at low energy

Double-folding potential Using a χ EFT (N²LO) local in coordinate space

double folded with ¹⁶O densities \rightarrow optical potential

calculations by V. Durant

- Good agreement with data at forward angle
- Lack of absorption at larger angle

Usual phenomenological description

In reaction models, projectile \equiv two-body system :

 $H_0 = T_r + V_{cn}(\boldsymbol{r}),$

where V_{cn} is a phenomenological Woods-Saxon that reproduces the basic nuclear properties of the projectile (binding energy, $J^{\pi},...$)

Nowadays *ab initio* calculations of such exotic nuclei are available Can we use them within a reaction code ?

But do we need to go that far?

Breakup reactions are mostly peripheral \Rightarrow probe :

- ANC of the ground state
- phaseshifts in the continuum

 \Rightarrow constrain two-body description by *ab initio* prediction

Stare of the art : ab initio

A recent *ab initio* calculation of ¹¹Be has been performed [A. Calci *et al.* PRL 117, 242501 (2016)]

FIG. 2. NCSMC spectrum of ¹¹Be with respect to the $n + {}^{10}$ Be threshold. Dashed black lines indicate the energies of the 10 Be states. Light boxes indicate resonance widths. Experimental energies are taken from Refs. [1,51].

Slow convergence

- \Rightarrow difficulties to reproduce the shell inversion
- \Rightarrow include phenomenology to obtain the correct ordering

Ab initio description of ¹¹Be bound states

- $\frac{1}{2}^+$ ground state : $\epsilon_{\frac{1}{2}^+} = -0.500 \text{ MeV}$ $C_{\frac{1}{2}^+} = 0.786 \text{ fm}^{-1/2}$ $S_{1s\frac{1}{2}}^2 = 0.90$
- $\frac{1}{2}^{-}$ bound excited state : $\epsilon_{\frac{1}{2}^{-}} = -0.184 \text{ MeV}$ $C_{\frac{1}{2}^{-}} = 0.129 \text{ fm}^{-1/2}$ $S_{0p\frac{1}{2}} = 0.85$

Ab initio description of ¹⁰Be-n continuum

Provides the most accurate calculation for the ¹⁰Be-n continuum

FIG. 3. The $n + {}^{10}$ Be phase shifts as a function of the kinetic energy in the center-of-mass frame. NCSMC phase shifts for the N²LO_{SAT} interaction are compared for two model spaces indicated by N_{max} .

Idea : constrain the ¹⁰Be-n potential in the reaction code to reproduce ab initio bound states ANC and δ_{lj} .

¹⁰Be-n potential

Replace the ¹⁰Be-n interaction by an effective potential in each partial wave

Use the spirit of halo EFT : separation of scales in energy or in distance Work in collaboration with Hammer (TUD) and Philips (U. Ohio)

Use a narrow Gaussian potential

$$V_{lj}(r) = V_0 \ e^{-\frac{r^2}{2\sigma^2}} + V_2 \ r^2 e^{-\frac{r^2}{2\sigma^2}}$$

Fit V_0 and V_2 to reproduce ϵ_{lj} , and C_{lj} (bound states) or Γ_{lj} for resonances

 σ = 1.2, 1.5 or 2 fm is a parameter used to evaluate the sensitivity of the calculations to this effective model

 $s_{rac{1}{2}}^{1}$: potentials fitted to $\epsilon_{rac{1}{2}^{+}}$ and $\mathcal{C}_{rac{1}{2}^{+}}$

Potentials fitted to $\epsilon_{1s\frac{1}{2}} = -0.504$ MeV and $C_{1s\frac{1}{2}} = 0.786$ fm^{-1/2} Ground-state wave function $s\frac{1}{2}$ phaseshifts

Wave functions : same asymptotics but different interior

- $\delta_{s_2^1}$: all effective potentials are in good agreement with ab initio up to 1.5 MeV (same effective-range expansion)
- Similar results obtained for $p_{\frac{1}{2}}$ and $d_{\frac{5}{2}}$ partial waves

p_2^3 and d_2^3 : potentials fitted to $\epsilon^{ m res}$ and Γ

- Large variation in δ obtained by effective potentials Broad potential (σ = 2 fm) cannot reproduce correct behaviour
- Fair agreement with ab initio results up to 2.5 MeV
- ¹⁰Be core excitation @ 3.4 MeV not described in effective model

¹¹Be+Pb \rightarrow ¹⁰Be+n+Pb @ 69AMeV

Folded with experimental resolution

- Major differences in $p_{3/2}$ partial wave ; due to differences in $\delta_{p_{3/2}}$
- Broad potential ($\sigma = 2 \text{ fm}$) produces unrealistic $p_{3/2}$ contribution
- Excellent agreement with experiment

¹¹Be+C \rightarrow ¹⁰Be+n+C @ 67AMeV

- All potentials produce similar breakup cross sections
- In nuclear breakup, resonances play significant role
- Order of magnitude of experiment well reproduced
- But resonant breakup not correctly described due to short-range details missing in the effective model

Effect of core-excitation in resonant breakup $^{11}Be+C \rightarrow ^{10}Be+n+C @ 67AMeV$ computed in an extended DWBA model including core excitation [A. Moro & J.A. Lay, PRL 109, 232502 (2012)]

- Breakup due to the excitation of the valence neutron and of the core are considered
- Both are needed to reproduce the oscillatory pattern of experiment
- Core excitation dominates the $\frac{3}{2}^+$ resonant breakup
- Confirms the missing short-range details in our effective model

Summary and prospect

- Exotic nuclei studied mostly through reactions
 - elastic scattering
 - breakup
- Mechanism of reactions with halo nuclei understood but there remain uncertainties :
 - optical potential choice
 - description of the projectile
- Optical potential can be built
 - from first principles
 - \Rightarrow strongly non-local and energy dependent
 - by folding χ EFT interactions
 - \Rightarrow simpler to use (predictive power?)
- Ab initio models too expensive to be used in reaction codes
 ⇒ include the predictions that matter in effective model
 - efficient way to include the significant degrees of freedom
 - enables us to estimate the influence of omitted mechnisms

Thanks to my collaborators

Daniel Baye Gerald Goldstein Frederic Colomer Chloë Hebborn

Achim Schwenk Hans-Werner Hammer Victoria Durant

Daniel Phillips

Filomena Nunes

 p_2^1 : potentials fitted to $\epsilon_{rac{1}{2}^-}$ and $C_{rac{1}{2}^-}$

Potentials fitted to $\epsilon_{0p\frac{1}{2}} = -0.184$ MeV and $C_{0p\frac{1}{2}} = 0.129$ fm^{-1/2} Excited-state wave function $p_{1/2}$ phaseshifts

- Wave functions : same asymptotics but different interior
- Larger variation in $\delta_{p_2^1}$ obtained by effective potentials Fair agreement with ab initio results up to 1 MeV

- Identical $\delta_{d\frac{5}{2}}$ up to 1.5 MeV for all potentials up to 5 MeV for the narrow potentials ($\sigma = 1.2$ and 1.5 fm)
- Good agreement with ab initio results up to 2 MeV

$^{11}\text{Be+Pb} \rightarrow ^{10}\text{Be+n+Pb} @ 69A \text{MeV}$

- Good agreement with experiment
- All potential provide similar cross sections $(\sigma = 2 \text{ fm slightly lower})$