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RG flow of LGW Φ4 field theories and critical

phenomena.

ABSTRACT: In the framework of the renormalization-group

(RG) theory, several critical phenomena can be investigated by

studying the RG flow of an effective Landau-Ginzburg-Wilson

(LGW) Φ4 theory, having an N-component order parameter as

fundamental field, and containing up to 4th-order polynomials of the

field. I discuss the general properties of the RG flow of

Φ4 theories, and present an overview of RG field-theory

results for physically interesting LGW Φ4 theories,

whose results apply to liquids, magnets, disordered and/or frustrated

systems, to the finite-T transition in hadronic matter, competition of

different orderings, etc...



Critical phenomena are observed in many physical systems

There are two broad classes of phase transitions:

first order → discontinuity in thermodynamic quantities

continuous → nonanalytic behavior due to a diverging length

Examples of continuous

transitions:

• magnetic transitions

• liquid-vapor in fluids
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• first general framework was proposed by Landau (1937), based on

an expansion of the free energy in powers of the order parameter,

corresponding to mean-field approximation

• Renormalization-group (RG) theory by Wilson (1971)



In the framework of the RG theory, several critical phenomena can

be investigated by studying the RG flow of Φ4 theories with an

N -component fundamental field Φ, and containing up to 4th-order

polynomials of the field.

O(N)-symmetric models → L = (∂µ
~Φ)2 + r~Φ 2 + u (~Φ 2)2 ,

but also more complicated multi-parameter Φ4 theories with

several quadratic and quartic parameters, depending on the nature of

the order parameter and the symmetry-breaking pattern

L =
∑

i

[(∂µΦi)
2 + riΦ

2
i ] +

∑

ijkl

uijkl ΦiΦjΦkΦl

Results for their RG flow apply to several physical systems,

such as liquids, magnets, superfluid transitions in 4He and 3He, disordered

and/or frustrated systems, the finite-T transition in hadronic matter,

quantum transitions in high-T superconductors, etc...



Plan of the talk

• RG theory of critical phenomena and universality

• Field-theory approach based on LGW Φ4, in particular PFT

• RG flow of multiparameter Φ4 theories

• Overview of results of physically interesting Φ4 theories:

O(N) models and more complicated multiparameter Φ4 theories,

describing critical behaviors in

• liquids, superfluid transition in 4He, magnets

• disordered systems, dilute antiferromagnets

• frustrated systems with noncollinear order

• in hadron matter

• the presence of competition of different orderings



Continuous transitions are characterized by power-law behaviors

• Disordered (symmetric) phase (t ≡ T/Tc − 1 > 0, h = 0):

ξ ∼ t−ν , CH ∼ t−α, χ ∼ t−γ, χ ∼ ξ2−η

• Ordered (broken) phase (t < 0, h = 0+): CH ∼ |t|−α, M ∼ |t|β

• Critical isotherm (t = 0, h > 0): χ ∼ |h|−γ/βδ, G̃(q) ∼ q−2+η

• Scaling equation of state: h = tβδF (z), z = Mt−β

• Finite-size scaling, ex. χ ∼ L2−η at t = 0

• There are also critical behaviors characterized by exponential

approaches: LATTICE QCD where ξ ∼ exp(cβ) , and also 2D σ

models, 2D KT transition



Main ideas to describe the critical behavior at a continuous transition

• Order parameter which effectively describes the critical modes

• Scaling hypothesis: singularities arise from the long-range

correlations of the order parameter, diverging length scale

• Universality: the critical behavior is essentially determined by a few

global properties: the space dimensionality, the nature and the symmetry

of the order parameter, the symmetry breaking

RENORMALIZATION-GROUP THEORY

• RG flow in a Hamiltonian space

• the critical behavior is associated with a fixed point of the RG flow

• only a few perturbations are relevant, the corresponding positive

eigenvalues are related to the critical exponents ν, η, etc...



The Gibbs free energy obeys a scaling law

Fsing(u1, u2, . . . , uk, . . .) = b−dFsing(b
y1u1, b

y2u2, . . . , b
ykuk, . . .)

uk are nonlinear scaling fields (analytic functions of the model parameters)

In a standard continuous transition: two relevant scaling fields

ut ∼ t = T/Tc − 1 (with yt = 1/ν) and uh ∼ h (external field,

with yh = (β + γ)/ν), and irrelevant ui (i ≥ 3) with yi < 0.

When ut, t → 0 and uh, h → 0

Fsing ≈ ξ−d
[
f(hξyh) + ξ−ωfω(hξyh) + ...

]
, ξ ∼ t−ν

O(ξ−ω) arises from the leading irrelevant u3, and ω = −y3.

The presence of other relevant perturbations beside t and h gives rise

to multicritical behaviors. In the case of one more relevant field g

and for h = 0: Fsing ≈ tdνf(gt−φ), where φ > 0 is the crossover

exponent.



The RG theory provides the basis for the field-theory approaches.

Many critical phenomena can be described by LGW Φ4 theories

L =
∑

i

[(∂µΦi)
2 + riΦ

2
i ] +

∑

ijkl

uijkl ΦiΦjΦkΦl

where Φ is a N -component field. They are constructed by requiring

a few global properties of the system, keeping terms up to 4th order.

UNIVERSALITY CLASSES within which the critical behavior is

universal: • spatial dimension • nature of the critical modes and

order parameter • symmetry and symmetry-breaking pattern

Ex: SUPERFLUID transition in 4He along the λ-line: D=3, quantum

amplitude of helium atoms as order parameter, U(1) symmetry

3-D XY UNIVERSALITY CLASS: L = |∂µϕ|
2 + r |ϕ|2 + u |ϕ|4 with

a complex field ϕ, characterized by the critical exponents:
ν = 0.6717(1), α = −0.0151(3), η = 0.0381(2) (Campostrini, etal, 2006)



Perturbative schemes in field-theory approach

We are interested in the critical behavior of the “bare” correlation

functions Γn(p; r, u,Λ) of the φ4 theory L = (∂µ~ϕ)2 + r~ϕ 2 + u (~ϕ 2)2

• Massive zero-momentum scheme defined in the disordered phase

Γ2(p) = Z−1
ϕ [m2 + p2 +O(p4)], Γ4(0) = Z−2

ϕ m4−dg, Γ2,1(0) = Z−1
t

which relate the renormalized quantities m, g to the bare ones r, u.

• The critical limit m→ 0 (corresponding to ξ → ∞) can be studied

by Callan-Symanzik RG equations for Γ
(r)
n (p;m, g)

[
m

∂

∂m
+ β(g)

∂

∂g
−

1

2
nηϕ(g)

]
Γ(r)
n (p) = [2 − ηϕ(g)]m2Γ

(r)
n,1(p; 0)



• The RG functions β(g) = m∂g/∂m and ηϕ,t(g) = ∂lnZϕ,t/∂lnm

can be computed as power series of g (computed up to six, seven

loops by Nickel etal for O(N) models)

• when m→ 0 the coupling g is driven toward an infrared-stable

fixed point, i.e. a zero g∗ of the β-function β(g) ≈ −ω(g∗ − g)

• Using the RG equations, η = ηϕ(g∗), 1/ν = 2 − ηϕ(g∗) + ηt(g
∗)

• The perturbative FT expansions are asymptotic: S(g) =
P

n sng
n,

sn ∼ nb(−a)nn!, a > 0. They must be resummed before evaluating at

g∗, exploiting Borel summability and knowledge of the large-order

behavior by computing instanton semiclassical solutions, which

provide important nonperturbative information

• Alternative MS renormalization scheme defined at T = Tc,

ǫ ≡ 4 − d expansion, but also exp in the coupling setting ǫ = 1



Many results for the 3D Ising universality class

(liquid-vapor systems, fluid mixtures, uniaxial magnets)

corresponding to L = (∂µϕ)2 + rϕ2 + uϕ4 with ϕ ∈ ℜ

ν η β

EXPT liq-vap 0.6297(4)∗ 0.042(6) 0.324(2)

fluid mix 0.6297(7)∗ 0.038(3) 0.327(3)

magnets 0.6300(17)∗ 0.325(2)

Lattice HT exp1 0.63012(16) 0.0364(2) 0.3265(1)

MC2 0.63020(12) 0.0368(2) 0.3267(1)

PFT 6,7-l MZM3 0.6304(13) 0.034(3) 0.326(1)

O(ǫ5) exp3 0.6290(25) 0.036(5) 0.326(3)

∗ By using the hyperscaling relation α = 2 − 3ν. [1] M. Campostrini, A.

Pelissetto, P. Rossi, EV (2002). [2] Y. Deng, HWJ Blöte, (2003) [3] R. Guida, J.

Zinn-Justin, (1998)



3D XY universality class

L = |∂µϕ|
2 + r |ϕ|2 + u |ϕ|4 (complex ϕ)

The superfluid transition in 4He is an ex-

ceptional experimental opportunity, exploit-

ing also a microgravity environment using the

Space Shuttle (data up to a few nK from Tc)

α ν η
EXPT 4He 1 −0.0127(3) 0.6709(1)∗

Lattice MC+HT 3 −0.0151(3)∗ 0.6717(1) 0.0381(2)
MC 4 −0.0151(9)∗ 0.6717(3)

PFT 6,7-l MZM2 −0.011(4) 0.6703(15) 0.035(3)
O(ǫ5) exp2 −0.004(11) 0.6680(35) 0.038(5)

∗ By α = 2 − 3ν. [1] J.A. Lipa, etal, PRB 68 (2003) 174518; PRL 76 (1996) 944.

[2] R. Guida, J. Zinn-Justin, (1998). [3] M. Campostrini, M. Hasenbusch, A.

Pelissetto, EV (2006). [4] E. Burovski, etal, (2006)

→ Significant discrepancy between EXPT and Lattice results



There are also several critical phenomena which are described by

more general multi-parameter Φ4 theories:

L =
1

2

N∑

i=1

(∂µϕi)
2 + riϕ

2
i ] +

1

4!

N∑

ijkl=1

uijkl ϕiϕjϕkϕl

• The parameter ri and uijkl depend on the symmetry.

• If criticality is driven by one T -like parameter, and all ϕi become

critical,
∑
i ϕ

2
i must be the only invariant quadratic term. Thus

ri = r,
∑
i uiikl ∝ δkl, etc...

• In the absence of a large symmetry like O(N), several quartic

couplings must be considered.

• all Φ4 theories are expected to be trivial for D = 4 like O(N) models



Examples of physically interesting LGW Φ4 theories

• MN model with a real M ×N matrix field φai

L =
∑

i,a

[
(∂µφai)

2 + rφ2
ai

]
+

∑

ij,ab

(u0 + v0δij) φ2
aiφ

2
bj

For N → 0, disordered spin systems at magnetic transitions.

For M = 1, N = 2, 3, magnets with cubic anisotropy.

• O(M)⊗O(N) model, fields φa are M sets of N -comp vectors

L =
∑

a

[(∂µφa)
2 + rφ2

a] + u0(
∑

a

φ2
a)

2 + v0

∑

a,b

(φa · φb)
2

For M = 2, N = 3, v0 < 0, U(2) → O(2), superfluid transitions in 3He.

For M = 2, v0 > 0, O(2) ⊗O(N) → O(2) ⊗O(N − 2), noncollinear

frustrated magnets (stacked triangular antiferromagnets).



• Spin-density wave model (Φa are complex N -comp vectors)

|∂µΦ1|
2 + |∂µΦ2|

2 + r(|Φ1|
2 + |Φ2|

2) + u1,0(|Φ1|
4 + |Φ2|

4)

+u2,0(|Φ
2
1|

2 + |Φ2
2|

2) + w1,0|Φ1|
2|Φ2|

2 + w2,0|Φ1 · Φ2|
2 + w3,0|Φ

∗
1 · Φ2|

2

Critical behavior in spin-density wave systems.

Quantum transitions in high-Tc superconductors (cuprates).

• U(N)⊗U(N) models (Φ is a complex N×N matrix)

LU = Tr∂µΦ†∂µΦ + rTrΦ†Φ + u0

(
TrΦ†Φ

)2
+ v0Tr

(
Φ†Φ

)2

Finite-T transition in QCD with N quarks, neglecting U(1)A anomaly

• SU(N)⊗SU(N) models: LSU = LU + w0

(
detΦ† + detΦ

)

Finite-T transition in QCD taking into account the U(1)A anomaly effects



Multicritical behaviors arising from the competition

of different orderings, ex. with symmetries O(n1) and
O(n2), at the point where the corresponding transition lines meet (by

tuning two relevant parameters T and g)
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In high-Tc superconduc-

tors, anisotropic antifer-

romagnets, etc...

• O(n1)⊕O(n2) theory with two O(n1) and O(n2) vector fields

L = (∂µ~φ1)
2 + (∂µ~φ2)

2 + r1~φ
2
1 + r2~φ

2
2 + u1(~φ

2
1 )2 + u2(~φ

2
2 )2 + w~φ 2

1
~φ 2

2

• Coupled N -comp fields with (Z2)par ⊗O(N) symmetry

∂µφ · ∂µφ+ ∂µψ · ∂µψ + r1φ
2 + r2ψ

2 + u0φ
4 + v0ψ

4 + w0φ
2ψ2 + z0(φ · ψ)2



• The RG flow is determined by its FPs,

common zeroes g∗ijkl of βijkl(gabcd) ≡

µ∂gijkl/∂µ. A FP is stable if all eigenvalues

of Sij = ∂βi/∂gj |g=g∗ have positive real part

A

G H

C

v

u

• The existence of a stable FP implies that systems with the

given global properties can undergo a continuous transition, whose

asymptotic behavior is controlled by the stable FP.

• The absence of a stable FP predicts 1st-order transitions

• Even in the presence of a stable FP, systems that are outside its

attraction domain undergo 1st-order transitions, which means that the

nature of the transition is not a universal feature

• η conjecture (EV, Zinn-Justin, 2006): In Φ4 theories the stable FP is

the one corresponding to the fastest decay of correlations, i.e. maximum η



RG flow, critical exponents, etc..., by FT perturbative methods

L =
∑

i

[(∂µϕi)
2 + riϕ

2
i ] +

∑

ijkl

uijkl ϕiϕjϕkϕl

• Massive (disordered-phase) MZM scheme: expansion in

powers of the MZM quartic couplings gijkl

Γ
(2)
ij (p) = δijZ

−1
ϕ

[
m2 + p2 +O(p4)

]
, Γ

(4)
ijkl(0) = mZ−2

ϕ gijkl

• Massless (critical) MS scheme: Minimal subtraction within the

dimensional regularization, ǫ expansion, d = 3 MS exp

• High-order computations for several LGW Φ4 theories, to six
loops, requiring the calculation ∼> 1000 diagrams (Pelissetto, EV)

• Resummation exploiting Borel summability and calculation of the

large-order behavior, by instanton semiclassical calculation

• The comparison of MZM and MS expansions checks the results



Magnetic transitions in disordered systems

Spin models with impurities: mixing of antiferromagnetic materials

with non magnetic ones, FeuZn1−uF2, MnuZn1−uF2 (uniaxial), FexErz ,

FexMnyZrz (isotropic), 4He in porous materials.

Modeled by H = −J
∑

〈ij〉 ρi ρj ~si · ~sj , where ρi = 1, 0 with

probability p and 1 − p respectively

Quenched disorder: the relaxation of impurities is very slow, thus the

free energy F (ρ) ∝ lnZ(ρ) must be averaged over the disorder, thus

thermal and then disorder averages

〈O〉(β, {ρ}) =

P

{s} Oe
−βH(s;ρ)

P

{s} e
−βH(s;ρ)

, 〈O〉 =

Z

[dρ]P (ρ)〈O〉(β, {ρ})

Φ4 theory with quenched disorder coupled to the energy density

Hψ = ∂µ~ϕ(x) 2 + (r + ψ(x))~ϕ(x) 2 + g0(~ϕ(x) 2)2

ψ(x) is a spatially uncorrelated random field, P (ψ) ∼ exp(−ψ2/4w)



The replica trick, lnZ = limn→0(Z
n − 1)/n, allows us to integrate

out disorder, obtaining a translation invariant Hamiltonian

HMN =
∑

i,a

[
(∂µφa,i)

2 + rφ2
a,i

]
+

∑

ij,ab

(u0 + v0δij)φ
2
a,iφ

2
b,j

a, b = 1, ...M , i, j = 1, ...N , u0 < 0. The original system is recovered

in the limit N → 0.

The critical behavior is determined by the RG flow of the MN
model in the limit N → 0, and in particular by analyzing the

high-order MZM and MS series for N = 0.

More generally: Universality classes for magnetic transitions where

disorder does not break O(N) symmetry, even in the presence of

frustration, e.g. Edwards-Anderson models H = −
P

〈ij〉 Jij~si · ~sj where

Jij = ±1 with P (Jij) = pδ(Jij − J) + (1 − p)δ(Jij + J) and small p

Question: Is the critical behavior affected by disorder?



The critical behavior of the pure system is stable if αpure < 0 (Harris,

1974), as in multicomponent systems.

In Ising-like systems the pure Ising FP is un-

stable since αIs = 0.1096(5). Another stable

FP exists, implying the existence of a new 3D
RDI universality class.
Experiments confirm it. 0 5 10 15 20 25 30 35 40 45
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4He in porous materials and isotropic

magnets show the same critical behavior

as pure systems. Ising-like systems behave

differently, showing ν > νIsing ≃ 0.630

RDI exp ν β

experiments 1 0.69(1) 0.359(9)

PFT2 0.678(10) 0.349(5)

MC RSIM 3 0.683(2) 0.354(1)

MC ±J EA 3 0.682(3) 0.353(2)

[1] Uniaxial antiferromagnets FexZn1−xF2 (Slanič etal, 1999) [2] To six loops

(Pelissetto, EV, 2000) [3] Finite-size scaling analysis of MC data (Hasenbusch,

Parisen Toldin, Pelissetto, EV 2007)



The para-ferromagn. transition in the 3D ±J Edwards-Anderson

Ising model belong to the RDI universality class.

H = −
∑

〈xy〉 Jxyσxσy, on a simple cubic lattice, where σx = ±1,

and Jxy = ±1 are uncorrelated quenched random variables with

probability distribution P (Jxy) = pδ(Jxy − 1) + (1 − p)δ(Jxy + 1).

Simplified model for disordered uniaxial materials which show glassy

behavior in their phase diagram, such as FexMn1−xTiO3.

The high-T phase is paramagnetic. The low-

T phase depends on p: it is ferromagnetic for

small values of 1−p, while it is glassy with van-

ishing magnetization for larger values. High-

T and low-T phase are separated by para-ferro

and para-glassy transition lines, which meet at a

magnetic-glassy MCP (Hasenbusch, etal, 2008) 0

Is

T

1/2

glass

1 − p

RDIs

para

MG N−line

ferro



O(M)⊗O(N) theory (φa are M sets of N -component vectors)

L =
∑

a

[(∂µφa)
2 + rφ2

a] + u0(
∑

a

φ2
a)

2 + v0
∑

a,b

[(φa · φb)
2 − φ2

aφ
2
b ]

• For M = 2, v0 > 0, O(N) → O(N − 2)

→ transitions in frustrated systems with noncollinear order, stacked

triangular antiferromagnets (STAs), such as CsMnBr3, CsVBr3, modeled

by H = J‖
P

〈vw〉xy
~s(v) · ~s(w) − J⊥

P

〈vw〉z
~s(v) · ~s(w) +D

P

v
sz(v)2

Frustration arises from the

special geometry → ordered

ground state with a chiral

120o structure

left
handed

right
handed

Experiments on STAs show continuous transitions, and evidences

of the existence of new chiral universality classes.

• For M = 2, N = 3, v0 < 0, U(2) → O(2), transition in 3He



• No stable FP found for d . 4, within ǫ = 4 − d exp, predicting first-order

transitions for all systems, thus leading to an apparent contradiction. But

the extension to d = 3 is not guaranteed: new FPs may appear going from

d ∼
< 4 to d = 3 (this also occurs in superconductors)

• High-order computations within 3D FT schemes show the existence

of a stable FP (Pelissetto, Rossi, EV, 2001; Calabrese etal 2004), in

agreement with experiments.
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Zeroes of the MS β functions (left) and RG trajectories in the u, v plane from the

Gaussian to the stable chiral FP (right), with ν = 0.57(3), 0.55(3) for N = 2, 3.



Finite-T transition of QCD with Nf light quarks

LQCD = −
1

4
F a

µνF
a
µν +

Nf
X

f=1

ψ̄f (iγµDµ −mf )ψf

Z = Tr e−βH =

Z

DADψ̄Dψ exp(−S/g2), S =

Z β

0

dt

Z

d3x LQCD

Chiral symmetry for mf = 0: ψL,R → U(Nf )L,RψL,R
U(Nf )L ⊗ U(Nf )R ≃ U(1)V ⊗ U(1)A ⊗ SU(Nf )L ⊗ SU(Nf )R

U(1)V quark-number conservation, U(1)A broken by the anomaly,

SU(Nf )L ⊗ SU(Nf )R broken to SU(Nf )V due to a nonzero 〈ψ̄ψ〉

Phase transition at Tc ≃ 200 Mev restoring chiral symmetry

• Order parameter → Φij = ψ̄L,iψR,j , a Nf ×Nf complex matrix

• SB due to 〈ψ̄ψ〉: SU(Nf )L ⊗ SU(Nf )R → SU(Nf )V

The nature of the transition depends on Nf



The nature of the finite-T transition in QCD can be investigated

using RG methods (originally applied by Pisarski, Wilczek, 1984)

Let us assume that the transition is continuous ...

When ξ ≫ 1/Tc the system is effectively 3D, then its critical

behavior belongs to a 3D universality class characterized by a

complex Nf ×Nf matrix order parameter Φij and symmetry breaking

SU(Nf )L⊗SU(Nf )R → SU(Nf)V , or U(Nf )L⊗U(Nf )R →

U(Nf )V if the U(1)A is effectively restored at Tc.

The most general 3D LGW Φ4 theory compatible with the above

properties provides an effective theory of the critical modes at Tc.



No anomaly: Tr∂µΦ
†∂µΦ + rTrΦ†Φ + u0(TrΦ†Φ)2 + v0Tr(Φ†Φ)2

where U(N)L⊗U(N)R→U(N)V is realized for v0 > 0.

Due to anomaly: SU(Nf )L⊗SU(Nf )R →SU(Nf )V , achieved by

adding determinant terms, such as detΦ.

Nonvanishing quark masses correspond to an external field H,

i.e. by adding TrHΦ

Consistency with the hypothesis of continuous transition requires

a stable FP: (i) if no stable FPs exist, the transition of QCD is predicted

to be first order; (ii) if a stable 3D FP exists, it can be continuous and its

universal critical behavior is determined by the FP. But, it may still be first

order if the system is outside the attraction domain of the stable FP. In this case

the nature of the transition is not a universal feature.



• QCDNf=2 neglecting anomaly: The corresponding universality

class exists if there is a stable FP in the 3D U(2)⊗U(2) theory with a

complex 2×2 matrix field Φ

LU(2) = Tr(∂µΦ
†)(∂µΦ) + rTrΦ†Φ + u0

(
TrΦ†Φ

)2
+ v0Tr

(
Φ†Φ

)2

In both MZM and 3D MS schemes,

the analysis of high-order series

show the presence of a stable FP

(Basile, Pelissetto, EV 2005) → 3D

U(2)⊗U(2)/U(2) universality class

with ν ≈ 0.7, η ≈ 0.1.

v

u

stable FP

Gaussian O(n)
unstable

βzeroes of 
zeroes of β

v

u

This implies that the transition can be continuous.

No stable FP is found close to 4D within the ǫ expansion (Pisarski, Wilczek,

1984), thus this FP is peculiar of 3D critical behaviors (as finite-T QCD)



• QCDNf =2 taking into account the U(1)A anomaly

Symmetry breaking → SU(2)⊗SU(2)/SU(2) ≃ O(4)/O(3),
which corresponds to the O(4) universality class.

If the transition is continuous, it must show the O(4) scaling behavior

~M ∝ ~H|H|(1−δ)/δE(y)

y ∝ t|H|−1/(β+δ)

〈ψ̄ψ〉 ∝ |M |, mf ∝ |H|

δ = 4.789(6), β = 0.3882(10)
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(O(4) results from Parisen Toldin etal, 2003, and Hasenbusch 2001)



The effects of the anomaly can be also investigated by considering

the most general Φ4 theory with symmetry SU(2)⊗SU(2):

LSU(2) = Tr(∂µΦ
†)(∂µΦ) + rTrΦ†Φ + u0

(
TrΦ†Φ

)2
+ v0Tr

(
Φ†Φ

)2
+

w0

(
detΦ† + detΦ

)
+ x0

(
TrΦ†Φ

) (
detΦ† + detΦ

)
+ y0

[
(detΦ†)2 + (detΦ)2

]

where w0,x0,y0∼ g → effective breaking of U(1)A (Pelissetto, EV, 2005)

There are 2 quadratic terms: transition lines in the T -g plane

meeting at a MCP controlled by the U(2)L⊗U(2)R theory for g = 0

in the case of contin-

uous (left) or first or-

der (right) at g = 0

g g
T T

O(4) O(4)U(2)xU(2)/U(2)

O(4)

1st order

O(4)

O(4) critical behavior if the transition is continuous and g 6= 0.



• QCD with Nf ≥ 3 → L = Tr(∂µΦ
†)(∂µΦ) + rTrΦ†Φ +

u0

(
TrΦ†Φ

)2
+ v0Tr

(
Φ†Φ

)2
+ w0

(
detΦ† + detΦ

)

High-order FT analyses do not show any stable FP for N ≥ 3, therefore

the transition QCD is predicted to be first order

Summary of predictions for the finite-T transition of QCD

QCD no anomaly, Nc → ∞

SU(Nf ) ⊗ SU(Nf ) U(Nf ) ⊗ U(Nf )

Nf = 1 crossover or first order O(2) or first order

Nf = 2 O(4) or first order U(2)L⊗U(2)R/U(2)V or first order

Nf ≥ 3 first order first order

Lattice MC results are substantially consistent with these scenarios



Multicritical behavior arising from the competition of different

orderings with symmetries O(n1) and O(n2), at the point where the

transition lines meet, tuning two relevant parameters T and g
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In high-Tc superconduc-

tors, anisotropic antifer-

romagnets, etc...

O(n1)⊕O(n2) theory with two O(n1) and O(n2) vector fields

L = (∂µ~φ1)
2 + (∂µ~φ2)

2 + r1~φ
2
1 + r2~φ

2
2 + u1(~φ

2
1 )2 + u2(~φ

2
2 )2 + w~φ 2

1
~φ 2

2

Mean-field analysis: if δ = u1u2 − 9w2 < 0 the MCP is bicritical, for

δ > 0 it is tetracritical. Scaling at the multicritical point:

Fs ≈ tdνf(gt−φ) where ν and φ are universal critical exponents.



The multicritical behavior at the MCP is determined by the

stable FP of the RG flow in the quartic-coupling space when r1,2 are

tuned to their critical values.

FPs from the zeroes of the MS β functions βu1
= µ∂u1/∂µ,

βu2
= µ∂u2/∂µ, βw = µ∂w/∂µ. The critical exponents ν and φ by

evaluating the RG dimensions of the operators φi and φiφj at the

stable FP. The PFT expansion has been computed up to five loops in MS

expansion (Calabrese etal, 2003)
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An interesting possibility is that at the

MCP an effective enlargement of the sym-

metry, O(n1)⊕O(n2) → O(n1 + n2),
is realized. This requires the stability of

the O(n1 + n2)-symmetric FP.



• In 3D systems, FT calculations show that the O(n1 + n2) FP is

stable for n1 = n2 = 1 and unstable when n1 + n2 ≥ 3.

The enlargement of the symmetry can generally

occur only when two Ising lines meet at a MCP.

In the other cases it requires a tuning of an addi-

tional relevant parameter.

��
��
��
��

O(n )1 

O(n )2

flop lineg

T

ordered

ordered

disord.
phase

  1

2

• For n1 = 1 (Ising), n2 = 2 (XY), n1 + n2 = 3, a “biconical” FP is

stable (its critical exponents are however very close to the O(3)

ones). This result applies to anisotropic antiferromagnets in a uniform

magnetic field H along the anisotropy axis

• For n1 + n2 ≥ 4 a decoupled FP is stable. High-Tc superconductors

(cuprates, such as La2−xSrxCuO4) at low-T exhibit both superconductivity

(n1 = 2) and antiferromagnetism (n2 = 3) depending on doping x. Their

competition may give rise to a MCP in the T -x phase diagram.



some conclusions ...

• RG flows of generalized Φ4 theories describe many critical

phenomena.

• Field-theory approaches are effective, even in complex

cases with several quadratic and quartic parameters

• Accurate results are obtained by perturbative expansions

and high-order computations, after resummation exploiting

Borel summability and the knowledge of their large-order

behavior. Satisfactory comparisons with experiments

Results from PFT may improve by extending the series. This is a

very hard numerical task, essentially limited by the computation of

the multivariable integrals associated with the huge number of

diagrams (they are already ∼> 1000 at six loops).


