Equation of State and more from lattice regularized QCD

Frithjof Karsch, BNL& Bielefeld University

Introduction

Phases of Nuclear Matter

Bulk thermodynamics

cut-off effects in QCD thermodynamics the equation of state and velocity of sound at $\mu_q = 0$

Characterizing the QCD transition

deconfinement and chiral symmetry restoration

Conclusions

The Phases of Nuclear Matter

The Phases of Nuclear Matter Key Questions (NP LRP 2007)

study properties of strongly interacting nuclear matter and elementary particles under extreme conditions

strongly interacting

⇒ QCD = Quantum Chromo Dynamics

GOAL: learn about basic mechanisms that characterize QCD

chiral symmetry breaking; confinement; asymptotic freedom; axial anomaly

- What are the phases of strongly interacting matter, and what role do they play in the cosmos?
- What does QCD predict for the properties of strongly interacting matter?

What governs the transition of quarks and gluons into pions and nucleons?

Heavy Ion collisions and the QGP

simple Bjorken model \sim 1-d hydrodynamic expansion

equation of motion: $\partial_{\mu}T^{\mu
u}=0$

energy density:
$$\frac{\mathrm{d}\epsilon}{\mathrm{d}\tau} + \frac{1}{\tau}\left(\epsilon + p\right) - \frac{1}{\tau^2}\left(\frac{4}{3}\eta + \theta\right) = \epsilon(\tau_0)\delta(\tau - \tau_0)$$

 \Rightarrow understanding the time evolution requires knowledge of the equation of state and transport coefficients (bulk (θ) and shear (η) viscosity)

QCD Thermodynamics: Simulating hot and dense matter

$$\leftarrow$$
 V^{1/3} =N_o a \rightarrow

partition function:

$$Z(V,T,\mu) = \int \mathcal{D} \mathcal{A} \mathcal{D} \psi \mathcal{D} ar{\psi} \; \mathrm{e}^{-S_E}$$

$$S_E = \int_{m 0}^{m 1/T} dx_0 \int_{m V} d^3x \; {\cal L}_E({\cal A},\psi,ar\psi,m\mu)$$

temperature volume

chemical potential

 $\mathcal{O}(10^6)$ grid points; $\mathcal{O}(10^8)$ d.o.f.; integrate eq. of motion

QCD Thermodynamics: Simulating hot and dense matter

he lattice:
$${f N}_{\sigma}^3 imes {f N}_{ au}$$

the problem: the fermion determinant requires

 $1/T = N_{\tau}a$ large scale computing

$$\leftarrow$$
 V^{1/3} =N_oa \rightarrow

partition function:

$$Z(V,T,\mu) = \int \mathcal{D}\mathcal{A} \ Det M(\mathcal{A},\mu) \ \mathrm{e}^{-S_G}$$

$$ig|_{S_E} = \int_{m 0}^{m 1/T} dx_0 \int_{m V} d^3x \; \mathcal{L}_E(\mathcal{A},\psi,ar{\psi},m{\mu})$$

temperature volume

chemical potential

particularly difficult problems:

- Iow momentum structure of the QGP (many scales)
- finite density QCD(complex determinant)
 - chiral formulation of QCD (5th dimension,..)

Bulk thermodynamics

Goal: QCD thermodynamics with realistic quark masses in (2+1)-f QCD and controlled extrapolation to the continuum limit;

 $\Rightarrow T_c$, EoS,.. for $\mu_q \geq 0$

 $N_{\tau} = 4$, 6: bulk thermodynamics on a line of constant physics (LCP):

RBC-Bielefeld collaboration PRD77, 014511 (2008)

(i) use $m_l=0.1m_s$, corresponding to $m_\pi\simeq 220$ MeV;

(ii) tune m_s to physical strange quark mass using m_K , $m_{\bar{s}s}$ at all values of the cut-off

- analyze EoS in a wide T-range: 140 MeV $\leq T \leq 800$ MeV
- extend analysis to $N_{\tau} = 8$; compare p4 and asqtad results: joint project of RBC, Bielefeld, MILC, LANL and LLNL \Rightarrow hotQCD collaboration

Cut-off effects and staggered fermions

the situation is more complex than in SU(3)

I) we have to deal with $\mathcal{O}(a^2)$ discretization errors; just like in SU(3) but more severe!

 $\mathcal{O}(a^2)$ improved actions for thermodynamics: Naik, p4

II) in addition we have to deal with $\mathcal{O}(a^2)$ violations of chiral symmetry fat links in various variants, 3-link staple, 7-link staple (asqtad), stout,..

Cut-off effects with SF

the ideal gas (infinite temperature) limit (I):

- standard staggered fermions lead to $\mathcal{O}(a^2)$ errors in bulk thermodynamics
- P4-action and Naik action remove $\mathcal{O}(a^2)$ errors in bulk thermodynamics at $\mu = 0$ and $\mu > 0$

 $\Rightarrow \mathcal{O}(a^2) \text{ improved pressure;} \\\Rightarrow \text{ small higher order corrections}$

Prasad Hegde et al., Eur. Phys. J. C55, 423 (2008)

$$\begin{array}{lll} \displaystyle \frac{p}{p_{SB}} & = & 1 + \frac{248}{147} \left(\frac{\pi}{N_{\tau}}\right)^2 + \frac{635}{147} \left(\frac{\pi}{N_{\tau}}\right)^4 + \dots & (standard) \\ \\ \displaystyle \frac{p}{p_{SB}} & = & 1 + & 0 & - \frac{1143}{980} \left(\frac{\pi}{N_{\tau}}\right)^4 + \frac{73}{2079} \left(\frac{\pi}{N_{\tau}}\right)^6 + \dots & (p4) \\ \\ \displaystyle \frac{p}{p_{SB}} & = & 1 + & 0 & - \frac{1143}{980} \left(\frac{\pi}{N_{\tau}}\right)^4 - \frac{365}{77} \left(\frac{\pi}{N_{\tau}}\right)^6 + \dots & (Naik) \end{array}$$

Cut-off effects with SF

the ideal gas (infinite temperature) limit (II):

Calculating the EoS on lines of constant physics (LCP)

Interaction measure for $N_f = 2 + 1 \quad \Leftrightarrow \quad$ Trace Anomaly

$$\begin{aligned} \frac{\epsilon - 3p}{T^4} &= T \frac{\mathrm{d}}{\mathrm{d}T} \left(\frac{p}{T^4} \right) = \left(a \frac{\mathrm{d}\beta}{\mathrm{d}a} \right)_{LCP} \frac{\partial p/T^4}{\partial \beta} \\ &= \left(\frac{\epsilon - 3p}{T^4} \right)_{gluon} + \left(\frac{\epsilon - 3p}{T^4} \right)_{fermion} + \left(\frac{\epsilon - 3p}{T^4} \right)_{\hat{m}_s/\hat{m}_l} \end{aligned}$$

$$\left. rac{p}{T^4}
ight|_{eta_0}^{eta} = \int_{T_0}^T \mathrm{d}T \; rac{1}{T} \left(rac{\epsilon - 3p}{T^4}
ight)$$

need T-scale, $aT = 1/N_{\tau}$ and its relation to the gauge coupling $a \equiv a(\beta)$

N.B.: $a(\beta)$ is only defined through physical observables \Rightarrow choose a simple one

$(\epsilon-3p)/T^4$ on LCP

- requires good control over T > 0 observables (action differences, chiral condensates); difficult: CPU requirement $\sim a^{-(10-12)}$
- **P** requires accurate determination of T = 0 scales

p4-data: RBC-Bielefeld M. Cheng et al, PRD77, 014511 (2008)

asqtad data: MILC C. Bernard et al., PRD 75, 094505 (2007

F. Karsch, EMMI workshop, Münster, February 2009 – p.11/29

T = 0 scale setting using the heavy quark potential

use r_0 or string tension to set the scale for $T = 1/N_{\tau}a(\beta)$

$$V(r) = -rac{lpha}{r} + \sigma r$$
 , $r^2 rac{{
m d} V(r)}{{
m d} r}|_{r=r_0} = 1.65$

no significant cut-off dependence when cut-off varies by a factor 5

i.e. from the transition region on $N_{\tau} = 4$ lattices ($a \simeq 0.25$ fm) to that on $N_{\tau} = 20$ lattices ($a \simeq 0.05$ fm) !!

scales extracted from 'gold plated observables'

- high precision studies of several experimentally well known observables in lattice calculations with staggered (asqtad) fermions led to convincing agreement ⇒ gold plated observables
- simultaneous determination of r_0/a in these calculations determines the scale r_0 in MeV

knowing any of these experimentally accessible quantities accurately from a lattice calculation is equivalent to knowing r_0 , which is a fundamental parameter of QCD

C.T.H. Davies et al., PRL 92 (2004) 022001 A. Gray et al., PRD72 (2005) 094507

scales extracted from 'gold plated observables'

- high precision studies of several experimentally well known observables in lattice calculations with staggered (asqtad) fermions led to convincing agreement ⇒ gold plated observables
- simultaneous determination of r_0/a in these calculations determines the scale r_0 in MeV

we use $r_0 = 0.469(7)$ fm determined from quarkonium spectroscopy A. Gray et al, Phys. Rev. D72 (2005) 094507

C.T.H. Davies et al., PRL 92 (2004) 022001 A. Gray et al., PRD72 (2005) 094507

$$f_{\pi}$$

$$f_{K}$$

$$3M_{\Xi} - M_{N}$$

$$2M_{B_{s}} - M_{\Upsilon}$$

$$\psi(1P - 1S)$$

$$\Upsilon(1D - 1S)$$

$$\Upsilon(2P - 1S)$$

$$\Upsilon(2P - 1S)$$

$$\Upsilon(3S - 1S)$$

$$\Upsilon(1P - 1S)$$

$$0.9 \quad 1 \quad 1.1$$

$$LQCD/Exp't (n_{f} = 3)$$

$$E Karsch, EMMI workshop, Münster, February 2009 - p.13/29$$

..towards the cont. limit: $N_{ au}=8$

hotQCD-collaboration PRELIMINARY

- $\begin{bmatrix} (\epsilon 3p)/T^4 \end{bmatrix}_{max} \gtrsim 200 \text{ MeV} \\ \sim \text{ softest point of EoS} \\ \sim \text{ minimum of velocity of sound}$
- cut-off effects persist in the peak region: discretization errors for $T \in [200 \text{MeV}, 220 \text{MeV}]$: ~ 15%
- high-T: good agreement between $N_{ au} = 6$ and 8 results for $T \gtrsim 300$ MeV;

significant deviations from perturbative behavior

EoS: low and high T regime

- approach to continuum limit $\rightarrow N_{\tau} = 6, 8$
 - $\rightarrow \mathcal{O}(5MeV)$ shift of *T*-scale

LGT below HRG for $T \lesssim 180$ MeV

coarser lattice, larger cut-off effects but: Which HRG?

 $M_{max} = 1.5 \text{ GeV}, 2.5 \text{ GeV},...$

- approach to continuum limit
 - $ightarrow N_{ au} = 6, \ 8$: no significant cut-off dependence for $T \gtrsim 300 \ {
 m MeV}$
- strong deviations from conformal limit: find $(\epsilon - 3p)/T^4 \sim a/T^2 + b/T^4$ for $300 \text{MeV} \lesssim T \lesssim 700 \text{MeV}$

Pressure, Energy and Entropy

- p/T^4 from integration over $(\epsilon 3p)/T^5$; starting integration at T = 0 MeV with p(0) = 0; use hadron resonance gas at $T_0 = 100$ MeV to estimate systematic error: $[p(T_0)/T_0^4]_{HRG}\simeq 0.265$
 - high-T region is well under control; significant deviations from conformal limit

Pressure, Energy and Entropy

- p/T^4 from integration over $(\epsilon 3p)/T^5$; starting integration at T = 0 MeV with p(0) = 0; use hadron resonance gas at $T_0 = 100$ MeV to estimate systematic error: $[p(T_0)/T_0^4]_{HRG} \simeq 0.265$
- high-T region is well under control; significant deviations from conformal limit

F. Karsch, EMMI workshop, Münster, February 2009 - p.16/29

Pressure, Energy and Entropy

- p/T^4 from integration over $(\epsilon 3p)/T^5$; starting integration at T = 0 MeV with p(0) = 0; use hadron resonance gas at $T_0 = 100$ MeV to estimate systematic error: $[p(T_0)/T_0^4]_{HRG} \simeq 0.265$
 - high-T region is well under control; significant deviations from conformal limit

EoS and velocity of sound

• $p/\epsilon \Rightarrow$ velocity of sound:

$$c_s^2 = \frac{\mathrm{d}p}{\mathrm{d}\epsilon} = \epsilon \frac{\mathrm{d}(p/\epsilon)}{\mathrm{d}\epsilon} + \frac{p}{\epsilon} \equiv \frac{s}{c_{\mathrm{V}}}$$

hydro-expansion:

 $p/\epsilon < 1/3$

 \Rightarrow slows down expansion; \Rightarrow increases plasma lifetime

e.g. $1 \le \epsilon \, [\text{GeV/fm}^3] \le 10$ $\Rightarrow \Delta \tau \simeq 5.5 \, \text{fm (ideal gas)}$ $\Rightarrow \Delta \tau \simeq 7 \, \text{fm (LGT EoS)}$

hotQCD, preliminary

Cut-off effects with SF ($T < \infty$)

- O(a²) improvement crucial for controling the high-T structure
 of the EoS
- same holds true for quark number susceptibilities
 R. V. Gavai, S. Gupta and P. Majumdar, PRD65, 054506 (2002)
- dividing out the lattice-SB value over-compensates cut-off effects

Deconfinement and χ -symmetry

- The chiral phase transition (i.e. at $m_q = 0$) is deconfining
 - true in QCD, i.e. SU(3) + fermions in the fundamental representation
 - SU(3) + fermions in the adjoint representation: $T_{deconf} < T_{\chi}$
- The transition in QCD with physical quark masses is a crossover

In which sense is the transition

deconfining and chiral symmetry restoring?

- deconfinement: heavy hadrons ⇒ light quarks and gluons;
 liberation of many new light degrees of freedom
 ⇒ rapid change in ε/T⁴, s/T³,
- chiral symmetry restoration: vanishing mass splittings, no new degrees of freedom

⇒ minor effect on bulk thermodynamics, but rapid change of chiral condensate

Deconfinement and \chi-symmetry

- The chiral phase transition (i.e. at $m_q = 0$) is deconfining
 - true in QCD, i.e. SU(3) + fermions in the fundamental representation
 - SU(3) + fermions in the adjoint representation: $T_{deconf} < T_{\chi}$
- The transition in QCD with physical quark masses is a crossover

In which sense is the transition

deconfining and chiral symmetry restoring?

- deconfinement: heavy hadrons ⇒ light quarks and gluons;
 liberation of many new light degrees of freedom
 ⇒ rapid change in ε/T⁴, s/T³,
- chiral symmetry restoration: vanishing mass splittings, no new degrees of freedom

⇒ minor effect on bulk thermodynamics, but rapid change of chiral condensate

Critical behavior & chiral limit of QCD

Universal critical behavior (thermal): $f(T, \mu_q) = f_s + f_r$

$$\begin{array}{lcl} f_s(T,\mu_q) &=& b^{-1} f_s(t b^{1/(2-\alpha)}) \sim t^{2-\alpha} \\ \\ t &=& \left| \frac{T-T_c}{T_c} \right| + A \left(\frac{\mu_q}{T_c} \right)^2 \quad , \quad \alpha < 0 \ \text{for} \ O(N) \end{array}$$

fluctuations of Goldstone modes influence behavior in the chiral limit also away from (thermal) criticality

$$\int c(T)\sqrt{m_q} + d(T)m_q + \text{regular} \qquad T < T_c$$

$$egin{aligned} &\langle ar{\psi}\psi
angle &\sim & \left\{ egin{aligned} &c_{\delta}m_q^{1/\delta}+d(T_c)m_q+ ext{regular} &T=T_c\ &d(T)m_q+ ext{regular} &T>T_c \end{aligned}
ight. \end{aligned}$$

$$\Rightarrow \chi_m \sim \left. rac{\partial \langle ar{\psi} \psi
angle}{\partial m_q}
ight|_{m_q=0} \sim \left\{ egin{array}{cc} \infty & T \leq T_c \ t^{-\gamma} & T > T_c \end{array}
ight.$$

Quark number susceptibility... ...and its susceptibility

- rapid change in quark/baryon/strangeness number susceptibility reflects change in mass of the carrier of these quantum numbers DECONFINEMENT
- quark number susceptibility feels nearby singular point just like the energy density

scaling field:
$$t = \left| \frac{T - T_c}{T_c} \right| + A \left(\frac{\mu_q}{T_c} \right)^2$$
, $\mu_{crit} = 0$
singular part: $f_s(T, \mu_q) = b^{-1} f_s(t b^{1/(2-\alpha)}) \sim t^{2-\alpha}$

Y. Hatta, T. Ikeda, PRD67 (2003) 014028

$$c_2 \equiv \chi_q \sim \frac{\partial^2 \ln \mathcal{Z}}{\partial \mu_q^2} \sim t^{1-lpha} \quad , \quad c_4 \sim \frac{\partial^4 \ln \mathcal{Z}}{\partial \mu_q^4} \sim t^{-lpha} \quad (\mu = 0)$$

 $\epsilon \sim \frac{\partial \ln \mathcal{Z}}{\partial T} \sim t^{1-lpha} \quad , \quad C_V \sim \frac{\partial^2 \ln \mathcal{Z}}{\partial T^2} \sim t^{-lpha} \quad (\mu = 0)$

 $\Rightarrow 2^{nd}$ derivative w.r.t μ_q "looks like energy density" $\Rightarrow 4^{th}$ derivative w.r.t μ_q "looks like specific heat"

Energy Density and Light Quark Susceptibility

- singular parts of ϵ/T^4 and χ_l/T^2 have identical T-dependence
- χ_s and ϵ couple to different excitations at low T:

 $\chi_s \sim \exp(-m_K/T) \;,\; \epsilon \sim \exp(-m_\pi/T)$

Quartic fluctuations of baryon number charge & strangeness in (2+1)-flavor QCD

RBC-Bielefeld, arXiv:0811.1006

vanishing chemical potentials:

 \Rightarrow large light quark number & charge fluctuations across transition region chiral limit: χ_4^B , $\chi_4^Q \sim |T - T_c|^{-\alpha} + \text{regular}$

$N_{\tau} = 4$: chiral condensate

(RBC-Bielefeld collaboration, in preparation)

ullet evidence for $\sqrt{m_l}$ term in $\langle ar{\psi} \psi
angle$

for orientation: $eta=3.28~T\simeq188$ MeV, $eta=3.30~T\simeq196$ MeV

$N_{\tau} = 8$: p4 and asqtad

hotQCD and RBC-Bielefeld collaborations, preliminary

- p4 and asqtad calculation lead to similar quark mass dependence
- the rapid drop at large temperature is consistent with the expected O(2) [O(4)] scaling; however no 'critical behavior' of peak heights
- thermal critical behavior competes with fluctuations of Goldstone modes in the symmetry broken phase
 F. Karsch, EMMI workshop, Münster, February 2009 p.25/29

CHIRAL SYMMETRY RESTORATION:

Chiral condensates

sudden change in ratios of finite and zero temperature condensates reflects chiral symmetry restoration

$$\Delta_{l,s}(T) = \frac{\langle \bar{\psi}\psi \rangle_{l,T} - \frac{m_l}{m_s} \langle \bar{\psi}\psi \rangle_{s,T}}{\langle \bar{\psi}\psi \rangle_{l,0} - \frac{m_l}{m_s} \langle \bar{\psi}\psi \rangle_{s,0}}$$

subtracted a fraction of the strange quark condensate to eliminate additative renormalization terms

- 'normal' cut-off dependence of the subtracted and normalized chiral condensate; no 'unusually' large effects for $N_{\tau} = 8$
- consistent with confinement observables
- good agreement between p4 and asqtad results for $N_{ au} = 8$

 $N_{\tau} = 6$ (p4): RBC-Bielefeld, PRD77, 014511 (2008) $N_{\tau} = 8$, and $N_{\tau} = 6$ (asqtad): hotQCD, preliminary

CHIRAL SYMMETRY RESTORATION:

χ -condensate and susceptibility

sudden change in chiral condensate is, of course, related to peaks in the (singlet) chiral susceptibility

$$\chi_{tot}/T^2 = 2\chi_{dis}/T^2 + \chi_{con}/T^2$$

band: 185 MeV < T < 195 MeV

Deconfinement and χ -symmetry and bulk thermodynamics

Conclusions

$\mathcal{O}(a^2)$ improved actions drastically reduce cut-off effects

p4 and asqtad actions lead to consistent thermodynamics on lattices of temporal extent $N_{\tau} = 6$ and 8, although the handling of flavor symmetry breaking (fat-links) and $\mathcal{O}(a^2g^2)$ corrections as well as cut-off effects in the free limit are quite different

- deconfinement and chiral symmetry restoration happen at roughly the same temperature that also characterizes the crossover region seen in bulk thermodynamics
- T_c should be extracted from observables that are linked to critical behaviour in the chiral limit; analysis on $N_{\tau} = 8$ lattices, including updated $N_{\tau} = 6$ results, is in progress

Deconfinement

renormalized Polyakov loop and strange quark number susceptibility

$$L_{ren} \sim {
m e}^{-F_Q(T)/T}, \qquad \qquad \chi_s/T^2 \sim \langle N_s^2
angle$$

