Reconstruction of short-lived particles in CBM

Ivan Kisel

FIAS, Uni-Frankfurt, Germany for the CBM Collaboration

Reconstruction Challenge in CBM at FAIR/GSI

- Future fixed-target heavy-ion experiment
- 10⁷ Au+Au collisions/sec
- ~ 1000 charged particles/collision
- Non-homogeneous magnetic field
- Double-sided strip detectors (85% fake space-points)

Full event reconstruction will be done on-line at the First-Level Event Selection (FLES) and off-line using the same FLES reconstruction package.

Cellular Automaton (CA) Track Finder Kalman Filter (KF) Track Fitter KF short-lived Particle Finder

All reconstruction algorithms are vectorized and parallelized.

CBM Detector System (simplified)

Many-Core CPU/GPU Architectures

CBM Workshop, SMIT, Sikkim 21-23.06.2016 3/13

HPC Example: Kalman Filter (KF) Track Fit Library

2 compute nodes with 2 AMD cards each = $2^{(8+37+37)} \times 10^7 = 164 \times 10^7$ tracks/s = 10^7 events/s

- Scalability with respect to the number of logical cores in a CPU is one of the most important parameters of the algorithm.
- The scalability on the Intel Xeon Phi coprocessor is similar to the CPU, but running four threads per core instead of two.
- In case of the graphic cards the set of tasks is divided into working groups of size *local item size* and distributed among compute units (or streaming multiprocessors) and the load of each compute unit is of the particular importance.

Full portability of the Kalman filter library

Cellular Automaton (CA) Track Finder: Efficiency

Efficient and stable event reconstruction

KF Particle: Reconstruction of Vertices and Decayed Particles

- Mother and daughter particles have the same state vector and are treated in the same way
- Geometry independent
- Kalman filter based

KFParticle provides uncomplicated approach to physics analysis (used in CBM, ALICE and STAR)

Ivan Kisel, Uni-Frankfurt, FIAS

CBM Workshop, SMIT, Sikkim 21-23.06.2016 6/13

Missing Mass Method

- Σ^+ and Σ^- have only channels with at least one neutral daughter.
- A lifetime is sufficient to be registered by the tracking system: $c\tau = 2.4$ cm for Σ^+ and $c\tau = 4.4$ cm for Σ^- .
- Can not to be identified by the PID detectors.
- Identification is possible by the decay topology:

KF Particle Finder Algorithm

KF Particle Finder for Physics Analysis and Selection

KF Particle Finder for Physics Analysis and Selection

CBM Online Physics Analysis

Extraction of parameters of theoretical models from measured data.

Motivation:

- determination of physical properties of QCD Matter created in HIC (temperature, flow, phase transitions, ...),
- · obtain limits of applicability of different models

A package to extract the parameters of theoretical models in CBM experiment is implemented

CBM Online Physics Analysis

Ivan Kisel, Uni-Frankfurt, FIAS

CBM Workshop, SMIT, Sikkim 21-23.06.2016 12/13

Summary

- The Kalman Filter track fit library is vectorized, parallelized and portable to CPU/Phi/GPU architectures.
- The Cellular Automaton track finder is vectorized and parallelized.
- The KF Particle package for reconstruction of short-lived particles has been developed.
- · Online physics analysis approaches are under investigation.

More details:

- V. Akishina, 4D event reconstruction in the CBM experiment, PhD Thesis, Uni-Frankfurt, 2016
 M. Zyzak, Online selection of short-lived particles on many-core computer architectures in the CBM experiment at FAIR, PhD Thesis, Uni-Frankfurt, 2016