International Conference on Matter under High Densities

Sikkim Manipal Institute of Technology Rangpo, Sikkim India

Charm production at FAIR

Anna Senger for CBM collaboration

Outline

- Motivation
- UrQMD model
- CBM
- Simulations
- Conclusions

Motivation

Helmut Satz

HICforFair Workshop "Heavy flavor physics with CBM" May 26-28, 2014

Why study charmonium production in nuclear matter?

• <u>Charmonium interactions</u>:

Normal hadrons (u,d,s): large ($\sim 1 \text{ fm}$), all of same size Charmonia ($c\bar{c}$) : small, different sizes, different binding Effect of size and binding on interaction with normal hadrons?

• Charmonium formation:

Charmonia formed in medium, evolution from $c\bar{c}$ to physical resonance

In-medium behavior of charmonia of different momenta probes different evolution stages

Possible processes in dense matter

Suppression by comover hadrons

Charmonium can be dissociated through interactions with hadrons in the medium formed in the collisions

Main feature: smooth dependence on centrality

Suppression by color screening

Onset for the suppression

Enhancement by recombination

In the QGP hadronization, charmonium formation can occour by binding a c and a cbar from different nucleon-nucleon collisions, as well as from the same. This recombination is possible only if heavy quark multiplicity is high (LHC energies)

Enhancement of J/ψ production

Subthreshold production

Possible production due to secondary interactions of heavy resonances (FAIR SIS100 energies)

Charm production at threshold energies in cold and dense matter

ALICE JHEP 1207 (2012) 191, arXiv:1205.4007

A. Frawley, T. Ulrich, R. Vogt, Phys.Rept.462:125-175,2008

UrQMD model

UrQMD is a microscopic transport model:

- calculates the space-time trajectories of "real" particles
- follows particles with a straight line trajectories until they scatter
- does not have long range interactions like potentials

Particle production in UrQMD

UrQMD is a microscopic transport model:

- bases on point like "real" hadrons with conserved energy-momentum, quantum numbers
- has only strong interactions. No electro-weak processes
- allows only $2 \leftrightarrow 2$, $2 \leftrightarrow 1$, $2 \rightarrow N$ and $1 \rightarrow N$ interactions
- hadrons interact via scattering according to geometrical interpretation of cross section
- has resonance decays according PDG values + guesstimates
- has detailed balance (violated in string excitations, annihilations and some decays)

Hadron production in UrQMD

Particle production only via:

- resonance excitation: $N + N \rightarrow X$ $N + M \rightarrow X$ $M + M \rightarrow X$
- annihilation: $B + B \rightarrow X$
- string excitations

Sub-threshold φ and Ξ⁻ production by high mass resonances with UrQMD J. Steinheimer and M. Bleicher arXiv:1503.07305v2 [nucl-th] 26 Nov 2015 Relevant channels:

- 1. $NN \rightarrow N\Delta_{1232}$
- 2. $NN \rightarrow NN^*$
- 3. $NN \rightarrow N\Delta^*$
- 4. $NN \rightarrow \Delta_{1232} \Delta_{1232}$
- 5. $NN \rightarrow \Delta_{1232}N^*$
- 6. $NN \rightarrow \Delta_{1232}\Delta^*$
- 7. $NN \rightarrow R^*R^*$

Motivation for UrQMD update

Centrality dependence of subthreshold φ meson production in Ni+Ni collisions at 1.9A GeV FOPI collaboration arXiv:1602.04378v2 [nucl-ex] 9 Jun 2016 Strange hadron production at SIS energies: an update from HADES HADES Collaboration doi:10.1088/1742-6596/668/1/012022

Update of UrQMD

Sub-threshold φ and Ξ^- production by high mass resonances with UrQMD J. Steinheimer and M. Bleicher , arXiv:1503.07305v2 [nucl-th] 26 Nov 2015

Newly introduced baryonic resonances

Name	Mass [GeV]	Width [GeV]	Spin
$N^{*}(2600)$	2.600	0.65	11/2
$N^{*}(2700)$	2.700	0.40	13/2
N*(3100)	3.100	1.30	15/2
$N^{*}(3500)$	3.500	1.30	17/2
N*(3800)	3.800	1.30	17/2
N*(4200)	4.200	1.30	19/2
$\Delta^{*}(2420)$	2.420	0.40	11/2
$\Delta^{*}(2750)$	2.750	0.40	13/2
$\Delta^*(2950)$	2.950	0.50	15/2
$\Delta^*(3300)$	3.300	1.00	17/2
$\Delta^{*}(3500)$	3.5 00	1.00	19/2
Δ *(3700)	3.700	1.00	19/2
Δ *(4200)	4.200	1.00	21/2

Subthreshold production via

 $N^* \rightarrow N + \varphi$ $N^* \rightarrow \Xi + K + K$

HADES data

Sub-threshold φ and Ξ⁻ production by high mass resonances with UrQMD J. Steinheimer and M. Bleicher arXiv:1503.07305v2 [nucl-th] 26 Nov 2015

FOPI data

Heavy baryonic resonances, multi strange hadrons and equilibration at SIS18 energies J. Steinheimer, M. Lorenz, F. Becattini, R. Stock and M. Bleicher arXiv:1603.02051v1 [nucl-th] 7 Mar 2016

Update of UrQMD

Sub-threshold charm production in nuclear collisions J. Steinheimer, A. Botvina, M. Bleicher arXiv:1605.03439

Newly introduced baryonic resonances

Name	Mass [GeV]	Width [GeV]	Spin
$N^{*}(2600)$	2.600	0.65	11/2
$N^{*}(2700)$	2.700	0.40	13/2
N*(3100)	3.100	1.30	15/2
$N^{*}(3500)$	3.5 00	1.30	17/2
N*(3800)	3.800	1.30	17/2
N*(4200)	4.200	1.30	19/2
$\Delta^{*}(2420)$	2.420	0.40	11/2
$\Delta^*(2750)$	2.750	0.40	13/2
$\Delta^{*}(2950)$	2.950	0.50	15/2
$\Delta^*(3300)$	3.300	1.00	17/2
$\Delta^{*}(3500)$	3.5 00	1.00	19/2
Δ *(3700)	3.700	1.00	19/2
Δ *(4200)	4.200	1.00	21/2

Subthreshold charm production via

 $N^* \rightarrow \Lambda_c + D$ $N^* \rightarrow N + J/\psi$

Note: does not (yet) include

- pair production D + \overline{D}
- charm pair production from string processes
- rescattering and absorption processes of the charmed hadrons in the hadronic medium

Charm subthreshold production

Subthreshold charm production via $N^* \rightarrow \Lambda_c + D$ and $N^* \rightarrow N + J/\psi$

Sub-threshold charm production in nuclear collisions J. Steinheimer, A. Botvina, M. Bleicher arXiv:1605.03439

UrQMD vs. HSD

W. Cassing, E. Bratkovskaya, A. Sibirtsev Nucl. Phys. A 691 (2001) 753

J. Steinheimer, A. Botvina, M. Bleicher arXiv:1605.03439v1

HSD calculation

http://fias.uni-frankfurt.de/~phsd-project/HSD

Central Au+Au collisions 10 A GeV : $M_{J/\psi} = 1.7 \cdot 10^{-7}$

UrQMD calculation including subthreshold charm production via $N^* \rightarrow \Lambda_c + D$ and $N^* \rightarrow N + J/\psi$

Central Au+Au collisions 10 A GeV: $M_{J/\psi} = 5 \cdot 10^{-6}$

CBM detector

MVD

primary and secondary vertex reconstruction with high precision **STS**

track, vertex and momentum reconstruction
*MuCh
muon identification

muon identification

RICH

electron identification

TRD

global tracking, electron identification **ToF**

time-of-flight measurement and hadron identification

ECAL

electron and neutral particle identification **PSD**

reaction plane and centrality determination

* Muon Chamber system

KFParticle package

D-meson setup

MVD

primary and secondary vertex reconstruction with high precision STS momentum reconstruction ToF hadron identification

D-meson reconstruction

Single track indentification:

- particle ID ToF detector
- separation of primary and secondary particles (reconstruction of the primary vertex) – MVD + STS

Decay chain reconstruction (KFParticle package):

- constrain of the secondary vertex and mother particle
- selection of the mother particles from the primary vertex

Precision of the primary vertex

Precision of the secondary vertex

Simulation results

Muon setup

STS

track, vertex and momentum reconstruction MuCh muon identification TRD global tracking ToF time-of-flight measurement and particle identification

Muon reconstruction strategy:

primary tracks passing through STS, MuCh and TRD, and mass determination via TOF

MuCh system

Simulation results

Conclusions

- CBM will provide first data on (open and hidden) charm production at beam energies close to the production threshold
- Measurement of production cross sections in p+p collisions
- Measurement of could nuclear matter effects on charm production in p+A collisions
- Measurements of charmonium as a probe of the hot medium in A+A collisions
- Important: Measurement of D mesons and J/ ψ under the same conditions

BACKUP

Quarkonium measurements

Quarkonium as a probe of the hot medium created in the collision (QGP)

Suppression vs regeneration

Investigation of cold nuclear matter effects (shadowing, energy loss...)

Crucial tool to disentangle genuine QGP effect is AA collisions

Reference process to understand behaviour in pA, AA collisions

Useful to investigate production mechanisms