OCD matter physics at FAIR The CBM experiment

Peter Senger

GSI and Univ. Frankfurt

Outline: ➤ The CBM physics case ➤ Status experiment preparation

International Conference on Matter under High Densities, 21 – 23 June 2016, Sikkim Manipal Institute of Technology, Rangpo, Sikkim, India

Exploring the QCD phase diagram

At very high temperature:

- N of baryons ~ N of antibaryons Situation similar to early universe
- L-QCD finds crossover transition between hadronic matter and Quark-Gluon Plasma
- Experiments: ALICE, ATLAS, CMS at LHC STAR, PHENIX at RHIC

Exploring the QCD phase diagram

Courtesy of K. Fukushima & T. Hatsuda

Baryon Chemical Potential $\mu_{\rm B}$

At high baryon density:

- N of baryons >> N of antibaryons Densities like in neutron star cores
- L-QCD not (yet) applicable
- Models predict first order phase transition with mixed or exotic phases
- Experiments: BES at RHIC, NA61 at CERN SPS, CBM at FAIR, NICA at JINR, J-PARC

Baryon densities in central Au+Au collisions

I.C. Arsene et al., Phys. Rev. C 75, 24902 (2007)

5 A GeV

10 A GeV

15

3-fluid PHSD

UrQMD QGSM

GiBUU

2.0

Quark matter in massive neutron stars?

Messengers from the dense fireball: **CBM** at **FAIR**

UrQMD transport calculation Au+Au 10.7 A GeV π, Κ, Λ, ...

 $\rho \rightarrow e^+e^-, \mu^+\mu^-$

Ξ-, Ω-, φ

 $\overline{p}, \overline{\Lambda}, \Xi^+, \Omega^+$

 $\rho \rightarrow e^+e^-, \mu^+\mu^-$

 $\rho \rightarrow e^+e^-, \mu^+\mu^-$

resonance decays

The equation-of-state of QCD matter at neutron star core densities

The equation-of-state of QCD matter at neutron star core densities

Phase transitions from hadronic matter to quarkyonic or partonic matter at high ρ_B, phase coexistence, critical point

- The equation-of-state of QCD matter at neutron star core densities
- Phase transitions from hadronic matter to quarkyonic or partonic matter at high ρ_B, phase coexistence, critical point
- Chiral symmetry restoration in dense baryonic matter

Quark Star

- The equation-of-state of QCD matter at neutron star core densities
- Phase transitions from hadronic matter to quarkyonic or partonic matter at high $\rho_{\rm B}$, phase coexistence, critical point
- > Chiral symmetry restoration in dense baryonic matter
- Extension of the nuclear chart into the strange domain

mass

- The equation-of-state of QCD matter at neutron star core densities
- Phase transitions from hadronic matter to quarkyonic or partonic matter at high ρ_B, phase coexistence, critical point
- Chiral symmetry restoration in dense baryonic matter
- Extension of the nuclear chart into the strange domain
- Charm production at threshold energies in cold and hot matter

CBM physics case I

The QCD matter equation-of-state at neutron star core densities

Equation of state: $P = \delta E/\delta V |_{T=const}$ $V = A/\rho$ $\delta V/ \delta \rho = - A/\rho^{2}$ $P = \rho^{2} \delta(E/A)/\delta \rho |_{T=const}$

T=0: E/A = $1/\rho \int U(\rho)d\rho$ Effective NN-potential: $U(\rho)=\alpha\rho+\beta\rho^{\gamma}$

 $E/A(\rho_o)$ = -16 MeV

- $\delta(E/A)(\rho_o)/\delta\rho = 0$
- Compressibility:

 $\kappa = 9\rho^2 \, \delta^2 (E/A) / \, \delta \rho^2$

Equation of state of symmetric nuclear matter

C. Fuchs, Prog. Part. Nucl. Phys. 56 (2006) 1

The equation-of-state of (symmetric) nuclear matter Observable: Kaon production in Au+Au collisions at 1 AGeV

$$pp \rightarrow K^+\Lambda p$$
 ($E_{thres} = 1.6 \text{ GeV}$)

Kaon production via multiple collisions

Idea: K⁺ yield \propto baryon density $\rho \propto$ compressibility κ

The equation-of-state of (symmetric) nuclear matter

Experiment: Excitation function of K⁺ production in Au+Au and C+C collisions C. Sturm et al., (KaoS Collaboration), Phys. Rev. Lett. 86 (2001) 39 Model calculation: Ch. Fuchs et al., Phys. Rev. Lett. 86 (2001) 1974

nuclear matter EOS

The equation-of-state of (symmetric) nuclear matter

Experiments at AGS: collective flow of protons in Au+Au collisions

Azimuthal angle distribution: $dN/d\phi = C (1 + v_1 \cos(\phi) + v_2 \cos(2\phi) + ...)$

P. Danielewicz, R. Lacey, W.G. Lynch, Science 298 (2002) 1592

The QCD matter equation-of-state at neutron star core densities

- > collective flow of identified particles ($\pi, K, p, \Lambda, \Xi, \Omega, ...$) driven by the pressure gradient in the early fireball
- particle production at (sub)threshold energies via multi-step processes (multi-strange hyperons, charm)

Direct multi-strange hyperon production:

2. Ξ^+ K⁺ $\rightarrow \Omega^+ \pi^+$.

 $pp \rightarrow \Xi^- K^+ K^+ p$ $(E_{thr} = 3.7 \text{ GeV})$ Ω^{-} production in 4 A GeV Au+Au $pp \rightarrow \Omega^- K^+ K^+ K^0 p$ (E_{thr} = 7.0 GeV) h4 $pp \rightarrow \Lambda^0 \Lambda^0 pp$ (E_{thr} = 7.1 GeV) 0.000148 Intries $pp \rightarrow \Xi^+ \Xi^- pp$ (E_{thr} = 9.0 GeV) $pp \rightarrow \Omega^+ \Omega^- pp$ $(E_{tbr} = 12.7 \text{ GeV})$ Hyperon production via multiple collisions 2e-05 1. pp $\rightarrow K^+\Lambda^0 p$, pp $\rightarrow K^+K^-pp$, 2. $p\Lambda^0 \rightarrow K^+ \Xi^- p$, $\pi\Lambda^0 \rightarrow K^+ \Xi^- \pi$, $\Lambda^0 \Lambda^0 \rightarrow \Xi^- p$, $\Lambda^0 K^- \rightarrow \Xi^- \pi^0$ BB BY YY MM MB MY 3. $\Lambda^0 \Xi^- \rightarrow \Omega^- n$, $\Xi^- K^- \rightarrow \Omega^- \pi^-$ HYPQGSM calculations, K. Gudima et al. Antihyperons 1. Λ^0 K⁺ $\rightarrow \Xi^+ \pi^0$.

The QCD matter equation-of-state at neutron star core densities

- > collective flow of identified particles (π ,K,p, Λ , Ξ , Ω ,...) driven by the pressure gradient in the early fireball
- particle production at (sub)threshold energies via multi-step processes (multi-strange hyperons, charm)

Direct multi-strange hyperon production:

 $\begin{array}{ll} pp \rightarrow \Xi^{\text{-}} \text{K}^{\text{+}} \text{K}^{\text{+}} p & (\text{E}_{thr} = 3.7 \text{ GeV}) \\ pp \rightarrow \Omega^{\text{-}} \text{K}^{\text{+}} \text{K}^{\text{+}} \text{K}^{0} p & (\text{E}_{thr} = 7.0 \text{ GeV}) \\ pp \rightarrow \Lambda^{0} \Lambda^{0} pp & (\text{E}_{thr} = 7.1 \text{ GeV}) \\ pp \rightarrow \Xi^{\text{+}} \Xi^{\text{-}} pp & (\text{E}_{thr} = 9.0 \text{ GeV}) \\ pp \rightarrow \Omega^{\text{+}} \Omega^{\text{-}} pp & (\text{E}_{thr} = 12.7 \text{ GeV}) \end{array}$

Hyperon production via multiple collisions

1. $pp \rightarrow K^+\Lambda^0 p$, $pp \rightarrow K^+K^-pp$, 2. $p\Lambda^0 \rightarrow K^+ \Xi^- p$, $\pi\Lambda^0 \rightarrow K^+ \Xi^- \pi$, $\Lambda^0\Lambda^0 \rightarrow \Xi^- p$, $\Lambda^0 K^- \rightarrow \Xi^- \pi^0$

3. $\Lambda^0 \Xi^- \rightarrow \Omega^- n$, $\Xi^- K^- \rightarrow \Omega^- \pi^-$

Antihyperons

1.
$$\Lambda^0$$
 K⁺ $\rightarrow \Xi^+ \pi^0$

2. Ξ^+ K⁺ $\rightarrow \Omega^+ \pi^+$.

CBM physics case II

Phase transitions from hadronic matter to quarkyonic or partonic matter at high ρ_{B} , phase coexistence, critical point

J. Wambach, K. Heckmann, M. Buballa, Act. Phys. Pol. B, Vol. 5 (2012)

Chemical freeze-out and the QCD phase boundary

Thermal model fits to measured hadron abundances suggest that all hadrons are in chemical equilibrium (including multi-strange hyperons)

A. Andronic, P. Braun-Munzinger, K. Redlich, J. Stachel, Jour. Phys. G38 (2011)

Phase transitions from hadronic matter to quarkyonic

or partonic matter at high ρ_{B} , phase coexistence, critical point

- \succ excitation function of strangeness: $\Xi^{-}(dss), \Xi^{+}(dss), \Omega^{-}(sss), \Omega^{+}(sss)$
 - \rightarrow chemical equilibration at the phase boundary

Phase transitions from hadronic matter to quarkyonic

or partonic matter at high ρ_{B} , phase coexistence, critical point

- ▶ excitation function of strangeness: $\Xi^{-}(dss), \Xi^{+}(dss), \Omega^{-}(sss), \Omega^{+}(sss)$
 - \rightarrow chemical equilibration at the phase boundary
- excitation function (invariant mass) of lepton pairs:

Thermal radiation from QGP, caloric curve

Phase transitions from hadronic matter to quarkyonic

or partonic matter at high ρ_{B} , phase coexistence, critical point

- ➤ excitation function of strangeness: $\Xi^{-}(dss), \Xi^{+}(dss), \Omega^{-}(sss), \Omega^{+}(sss)$
 - \rightarrow chemical equilibration at the phase boundary
- excitation function (invariant mass) of lepton pairs: Thermal radiation from QGP, caloric curve
- event-by-event fluctuations of conserved quantities (B,S,Q): "critical opalescence"
- > anisotropic azimuthal angle distributions: "spinodal decomposition"

4th moment of net-proton multiplicity distribution: critical fluctuations

Spinodal decomposition of the mixed phase

No data

at FAIR

energies

CBM physics case III

Onset of chiral symmetry restoration at high ρ_B

Onset of chiral symmetry restoration at high ρ_B

- > in-medium modifications of hadrons: $\rho, \omega, \phi \rightarrow e^+e^-(\mu^+\mu^-)$
- > dileptons at intermediate invariant masses: $4 \pi \rightarrow \rho a_1$ chiral mixing

Experiment: R. Arnaldi et al. [NA60 Coll.], Phys. Rev. Lett. 96, (2006) 162302, Theory: R. Rapp, J. Wambach and H. van Hees, in Relativistic Heavy-Ion Physics, edited by R. Stock, Landolt Börnstein (Springer), New Series I/23A (2010), arXiv:0901.3289 hep-ph

Onset of chiral symmetry restoration at high ρ_B

- > in-medium modifications of hadrons: $\rho, \omega, \phi \rightarrow e^+e^-(\mu^+\mu^-)$
- > dileptons at intermediate invariant masses: $4 \pi \rightarrow \rho a_1$ chiral mixing

Summary Dileptons

courtesy Tetyana Galatyuk

CBM physics case IV

Extensions of the nuclear chart to the strange domain

N- Λ , Λ - Λ interaction, strange matter?

- (double-) lambda hypernuclei
- meta-stable objects (e.g. strange dibaryons)

Double lambda hypernuclei production in central Au+Au collisions at 10 A GeV:

	Multiplicity	Yield in 1 week
⁵ ^/H	5 · 10 ⁻⁶	3000
⁶ ∧∧He	1 · 10 ⁻⁷	60

Assumption for yield calculation: Reaction Rate 1 MHz BR 10% (2 sequential weak decays) Efficiency 1%

A. Andronic et al., Phys. Lett. B697 (2011) 203

CBM physics case V

Charm production at threshold energies in cold and dense matter

ALICE JHEP 1207 (2012) 191, arXiv:1205.4007

A. Frawley, T. Ulrich, R. Vogt, Phys.Rept.462:125-175,2008

Charm production at threshold energies in cold and dense matter > excitation function of charm production in p+A and A+A (J/ ψ , D⁰, D[±])

Central coll. Au+Au 10 A GeV : $M_{J/\psi} = 1.7 \cdot 10^{-7}$

W. Cassing, E. Bratkovskaya, A. Sibirtsev, Nucl. Phys. A 691 (2001) 753 Central Au+Au collisions 10 A GeV: $M_{J/\psi} = 5.10^{-6}$

J. Steinheimer, A. Botvina, M. Bleicher, arXiv:1605.03439v1

Experimental challenges Particle yields in central Au+Au 4 A GeV Multiplicity Statistical model, A. Andronic, priv. com. 100 10 AGS 1 0.1 0.01 extremely high e+einteraction rates 11+1 required ! τv 10-6 π + π - d Λ K+ K- Ξ - φ Ω - \overline{p} $\overline{\Lambda}$ Ξ + Ω +

32

Experiments exploring dense QCD matter

Experimental requirements

10⁵ - 10⁷ Au + Au reactions/sec determination of displaced vertices ($\sigma \approx 50 \ \mu m$) identification of leptons and hadrons fast and radiation hard detectors and FEE free-streaming readout electronics high speed data acquisition and high performance computer farm for online event selection **4-D event reconstruction**

Online particle identification in CBM: The KF Particle Finder

successfully used online in the STAR experiment

CBM Technical Design Reports

CBM mile stones

CBM components	TDR approved	Start production	Ready for installation	Ready for beam
Micro Vertex Detector (MVD)	01.04.17	30.04.18	31.12.19	30.06.20
Silicon Tracking System (STS)	05.07.13	31.03.17	31.03.20	31.12.20
Ring Imaging Cherenkov Detector (RICH)	07.01.14	31.12.16	31.12.19	31.12.20
Muon Detector (MUCH)	28.02.15	31.12.16	31.12.19	31.12.20
Transition Radiation Detector (TRD)	01.04.17	31.12.17	31.12.20	31.12.21
Time of Flight System (TOF)	30.04.15	31.06.16	31.12.19	31.12.20
Electromagnetic Calorimeter (ECAL)	31.12.16	30.06.18	31.12.19	31.12.20
Projectile Spectator Detector (PSD)	28.02.15	31.12.15	31.12.18	31.12.19
Dipol Magnet	01.10.13	30.06.17	31.12.19	30.06.20
Online Systems (DAQ and FLES)	31.12.17	30.06.18	30.06.19	31.12.19

CBM detectors will be in place to take the first beams from SIS100

The CBM cave

The CBM Collaboration: 60 institutions, 530 members

Croatia: Split Univ. China: CCNU Wuhan Tsinghua Univ. USTC Hefei CTGU Yichang Czech Republic: CAS, Rez Techn. Univ.Prague France: IPHC Strasbourg Hungary:

KFKI Budapest Budapest Univ.

Germany: Darmstadt TU FAIR Frankfurt Univ. IKF Frankfurt Univ. FIAS Frankfurt Univ. ICS **GSI** Darmstadt Giessen Univ. Heidelberg Univ. P.I. Heidelberg Univ. ZITI HZ Dresden-Rossendorf **KIT Karlsruhe** Münster Univ. Tübingen Univ. Wuppertal Univ. **7IB** Berlin

India:

Aligarh Muslim Univ. Bose Inst. Kolkata Panjab Univ. Rajasthan Univ. Univ. of Jammu Univ. of Kashmir Univ. of Calcutta B.H. Univ. Varanasi VECC Kolkata IOP Bhubaneswar IIT Kharagpur IIT Indore Gauhati Univ. Korea: Pusan Nat. Univ.

Poland:

AGH Krakow Jag. Univ. Krakow Silesia Univ. Katowice Warsaw Univ. Warsaw TU

Romania:

NIPNE Bucharest Univ. Bucharest Russia: IHEP Protvino INR Troitzk ITEP Moscow Kurchatov Inst., Moscow LHEP, JINR Dubna LIT, JINR Dubna MEPHI Moscow Obninsk Univ. PNPI Gatchina SINP MSU, Moscow St. Petersburg P. Univ. Ioffe Phys.-Tech. Inst. St. Pb.

Ukraine:

T. Shevchenko Univ. Kiev Kiev Inst. Nucl. Research

Scientist fraction, CBM

Summary

- CBM scientific program at SIS100: Exploration of the QCD phase diagram in the region of neutron star core densities → discovery potential.
- First measurements with CBM: High-precision multi-differential measurements of hadrons incl. multistrange hyperons, hypernuclei and dileptons for different beam energies and collision systems → terra incognita.
 - Status of experiment preparation:
 Prototype detector performances fulfill CBM requirements.
 7 TDRs approved, 4 TDRs in preparation.
 - Funding:
 - Substantial part of the CBM start version is financed (+ EoI).
 - FAIR Phase 0: HADES with CBM RICH photon detector, use CBM detectors at STAR/BNL, BM@N/JINR, NA61/SPS. mCBM@SIS18 including DAQ and FLES for full system test

Backup

Particle Identification

Detectors used: STS, TOF, TRD

Particle acceptance central Au+Au collisions at 4 A GeV

50

2000

0000

Particle acceptance central Au+Au collisions at 10 A GeV

51

Di-muon acceptance in central Au+Au collisions

at 4 A GeV

at 8 A GeV

Particle yields based on HSD calculations

10% most central Au+Au collisions at 6 and 10 A GeV

Particle (mass	Multi- plicity	Multi- plicity	decay	PD	ε (%)	yield (s⁻¹)	yield (s⁻¹)	yield in 10 weeks	yield in 10 weeks	IR M⊔≁
MeV/c ²)	6 A GeV	10 A GeV	mode			6 A GeV	10 A GeV	6 A GeV	10 A GeV	
K+ (494)	12.5	20	-	-	31	3.9·10 ⁵	6.2·10 ⁵	2.4·10 ¹²	3.7·10 ¹²	1
K ⁻ (494)	1.4	3	-	-	27	3.8·10 ⁴	8.1·10 ⁴	2.3·10 ¹¹	4.8-10 ¹¹	1
ρ (770)	5	9	L+L-	4.7·10 ⁻⁵	4.6	1.1	2.0	6.5·10 ⁶	1.2·10 ⁷	1
ω (782)	3.3	6	L+L-	7.1·10 ⁻⁵	5.2	1.2	2.2	7.4·10 ⁶	1.3·10 ⁷	1
φ (1020)	0.07	0.12	L+L-	3·10 ⁻⁴	6.0	1.3-10 ⁻¹	2.2·10 ⁻¹	7.6·10⁵	1.3·10 ⁶	1
Λ (1115)	10.4	17.4	pπ ⁻	0.64	18	1.2·10 ⁵	2.0·10 ⁵	7.2·10 ¹¹	1.2·10 ¹²	1
7\ (1115)	4.6·10 ⁻⁴	0.034	<u></u> π⁺	0.64	11	1.1	81.3	6.6·10 ⁶	2.2·10 ⁸	10
Ξ ⁻ (1321)	0.054	0.222	Λπ-	1	6	3.2·10 ³	1.3·10 ⁴	1.9·10 ¹⁰	7.8·10 ¹⁰	10
E+ (1321)	3.0·10 ⁻⁵	5.4·10 ⁻⁴	Λπ+	1	3.3	9.9 . 10 ⁻¹	17.8	5.9·10 ⁶	1.1.10 ⁸	10
Ω ⁻ (1672)	5.8·10 ⁻⁴	5.6-10 ⁻³	٨K-	0.68	5	17	164	1.0·10 ⁸	9.6-10 ⁸	10
Ω+ (1672)	-	7·10 ⁻⁵	ΛK+	0.68	3	-	0.86	-	5.2·10 ⁶	10
J/ψ (3097)	-	1.74-10 ⁻⁷	L+L-	0.06	5	-	5.2·10 ⁻⁴	-	3100	10
³ _^ H (2993)	4.2·10 ⁻²	3.8·10 ⁻²	³ Heπ ⁻	0.25	19.2	2.10 ³	1.8·10 ³	1.2·10 ¹⁰	1.1.10 ¹⁰	10
⁴ ∧He (3930)	2.4·10 ⁻³	1.9-10 ⁻³	³ Hepπ ⁻	0.32	14.7	110	87	6.6·10 ⁸	5.2·10 ⁸	10

p + A collisions at 20 and 30 GeV

Particle	Multi-	Multi-				yield	yield	yield in	yield in	ID
(mass	plicity	plicity	decay	DD	c (0/)	(S ⁻¹)	(S ⁻¹)	10 weeks	10 weeks	
MeV/c ²)	20 GeV	30 GeV	mode	DK	E (%)	20 GeV	30 GeV	20 GeV	30 GeV	
D± (1869)	3.4·10 ⁻⁷	1.3·10 ⁻⁶	K⁺π⁻π⁻	0.09	13	4.0.10-2	1.5·10 ⁻¹	2.4·10 ⁵	9.2·10 ⁵	10
D ⁰ (1865)	5.1·10 ⁻⁷	2.0 . 10 ⁻⁶	К+ п-п- п+	0.08	2	8.2·10 ⁻³	3.2·10 ⁻²	4.9·10 ⁴	1.9·10 ⁵	10
J/ψ (3097)	7.5-10 ⁻⁸	2.9 . 10 ⁻⁶	L+L-	0.06	5	2.3·10 ⁻³	8.7·10 ⁻²	1.4·10 ⁴	5.2·10 ⁵	10

Status CBM collaboration contracts (Russia)

Project	Partner in Russia	Task	Costs (€ 2005)	Fraction of total costs	Council Decision	Status
SC dipole magnet	JINR BINP	Design and Construction	3.758 Mio	100%	9.07.2014	In preparation
STS	JINR Dubna	Construction of detector ladders for first 4 stations	2.115 Mio	23%	10.12.2013	signed
PSD	INR Troitzk	Design and Construction	0.778 Mio	81%	30.06.2015	signed
RICH	PNPI Gatchina	Construction of mechanical structures, gas system	1.45 Mio	28%	9.07.2014	Ready for signature
MUCH	PNPI Gatchina	Construction of absorbers, mechanical structures, gas system	3.022 Mio	39%	30.06.2015	In preparation
MUCH	JINR Dubna	Straw tube chambers	0.49 Mio	6%	30.06.2015	In preparation
TOF	ITEP	Inner zone	0.468 Mio	7 %		In discussion

Status CBM in-kind contracts

Project	Partner Institution	Task	Costs k€ 2005	Council decision	Status In-Kind contract
STS	AGH, Crakow, Poland	Design and Construction of STS-XYTER chip	572	30.06.2015	Ready to be signed
STS	JU, Crakow, Poland	Sensors, test procedures for STS- XYTER chip and FEE	707	June 2016	In preparation
STS	AGH, Crakow, Poland	STS-XYTER Front- End Board	261	June 2016	In preparation
HADES	JU, Crakow, Poland	HADES ECAL Mechanical frame	200	30.06.2015	signed
STS	WUT, Warsaw, Poland	Development of Data Processing Boards (DPBs)	260	30.06.2015	In preparation
TOF	IFIN-HH, Bukarest, Romania	RPC chambers and FEE	748	30.06.2015	In preparation
MUCH	VECC, Kolkata + 12 Indian Institutes	GEM chambers and FEE	3022	10.12.2015	In preparation

Status CBM purchase

Nr.	contracts	Value M€	partner	Status
1	Purchase RICH MAPMT HAMAMATSU	1.65	GSI	Ordered
2	STS module assembly contract	1.1	KIT Karlsruhe	Signed
3	Purchase iron for beam dump	0.25	KIT Karlsruhe	Signed
4	Purchase ASIC GBTx	1.245	CERN	Ordered

Agreement with China

Nr.	contracts	Value M€	Partner	Status
1	MRPC Time-of flight detector	4.0	CCNU Wuhan	Signed
2	TOF read-out electronics	0.8	CCNU Wuhan	Signed

Nuclear matter at high baryon density

- exchange of few mesons
- nucleons only
- exchange of many mesons
- structural change of hadrons

- Baryons overlap
- Quark Fermi sea

courtesy Toru Kojo (CCNU)