

The Silicon Tracking Systems of NICA Yuri Murin , VB LHEP JINR, Dubna, Russia

HI collisions energy domain of great expectations

FAIR (Darmstadt) – CBM stationary target experiment
 NICA (JINR, Dubna) – two types of experiment – Stationary target and collider

Mega-project «NICA»

Nuclotron Beams

Leaders: G. Trubnikov, I. Meshkov, A. Butenko

Parameter	Achie	eved	Project (2017 2019)				
Magnetic field, T	2.	0	2.0 (Bρ = 42.8 T⋅m)				
Field ramp, T/s	0.3	8	1.0				
Repetition period, s	8.	0	5.0				
	Energy,	, GeV/u	Energy, GeV/u	lons/ cycle			
Light ions \Rightarrow d	5.	6	6.0 5·10 ¹⁰				
Heavy ions	Without KRION-2		With KRION-6T & Booster				
⁴⁰ Ar ¹⁸⁺	3.5	5 ⋅10 ⁶	4.9	1.10 ⁸ 2.10 ¹⁰			
⁵⁶ Fe ²⁶⁺	2.5	2 ⋅10 ⁶	5.4	1.10 ⁸ 1.10 ¹⁰			
¹²⁴ Xe ^{48/42+}	1.5	1.10 ³	4.0	1.10 ⁷ 2.10 ⁹			
¹⁹⁷ Au ⁷⁹⁺			4.5	1.10 ⁷ 2.10 ⁹			
Polarized beams	With Polaris		With SPI				
p↑			11.9	1.10 ¹⁰ *)			
d↑	2.0	5.10 ⁸	5.6 1.10 ¹⁰				

"Physics at CBM", June 21–23 2016, Sikkim, India

*) With the Siberian snake

SC Magnets for Booster, Collider & SIS-100/FAIR workshop at VBLHEP JINR (bld. 217)

Development of the NICA Cryogenics

NICA: 3 detectors

Leader: V.Kekelidze

"Physics at CBM", June 21–23 2016, Sikkim, India

project is under preparation

BM@N: the 1st stage

Participants from:

Russia: INR, MEPhi, SINP, MSU, IHEP, S-Ptr Radium Inst. Bulgaria: Plovdiv University; China: Tsinghua University, Beijin; Poland: Warsaw Tech.Uni. Israel: Tel Aviv Uni. Germany: Frankfurt Uni. + expression of interest from CBM

Leaders: V.Kekelidze, M.Kapishin

Physics:

✓ strange / multi-strange hyperon and hypernuclei production

at the threshold

- ✓ hadron femtoscopy
- ✓ in-medium modifications of strange & vector mesons

in dense nuclear matter

 \checkmark electromagnetic probes, states decaying into γ , e (with ECAL)

BM@N status and milestones

BM@N	configuration
------	---------------

	DAQ	GEM (CERN)	ST	TOF	Outer tracker
•2016, IV:	basic config.	6 half planes	1 small plane	half config.	DCH
•2017, III:	complete	10 h/pl.	2 s/pl.	basic	DCH
•2019, I:	complete	8-10 full pl.	4 CBM STS stations	complete	Straw+DCH

BM@N STS comprises four first stations of CBM STS

BM@N status and milestones

BM@N plan

 technical runs with d, Li, C beams:
 2016 - 2017;

 physics run BM@N (I stage) with Kr int rate 20 kHz:
 IV q., 2017;

 physics run BM@N (II stage) with Au int rate 50 kHz:
 2019.

next technical run in 2016: commissioning of GEM & Si inside magnet

Simulation

A.Zinchenko, V.Vasendina

UrQMD & DCM-QGSM, Au+Au,

 $E_{kin} = 4.5A \text{ GeV}, 2 \times 10^6 \text{ events};$

High and intermediate energy HI physics major

Three ways to deconfinement

J.Steinheimer et al. J.of Physics: Conf.Ser., 599, 2015

>through high energy density no definite answer - result of the "crossover"

>"Pressing" (E≈30÷50AGeV) : Putting "the triple point" between the deconfined and confined worlds

➢ "formation of drops" (E≈3÷5AGeV): th correlations within spinodial phase decomp (J.Randrup, LBL): Observable? ➢ (J.Aichelin, H.Gutbrod) direct productic subthreshold production of cascade particles! Eprojectile > 3.7 AGeV : p+p→X⁻K⁺K⁻p Eprojectile < 3.7 AGeV : p+p→ K⁺Lp : LL → X⁻p - great sensitivity

MPD detector for Heavy-Ion Collisions @ NICA

Status: technical design and detector R&D – completed; Preparation for the mass production

MPD superconducting Solenoid

"Physics at CBM", June 21–23 2016, Sikkim, India

high level (~ 3x10⁻⁴) of magnetic field homogeneity

ASG superconducting (Genova, Italy):

- Cold Mass + Cryostat
- Vacuum System
- Trim Coils
- Control System
- General responsibility

Contract - signed; works – in progress

Contract with ASG (Italy)

34 months; signed in Dec 2015

Schedule for MPD Magnet fabrication & commissioning

critical !		2015 2016			2017				2018				2019							
		П	Ш	IV	I	Ш	Ш	IV	Ι	П	Ш	IV	Ι	П	Ш	IV	Ι	П	Ш	IV
ASG (Italy): Coils+Systems+responsibility																				
- final design report	-																			
- SC cable, cryostat, coils									34	l m	on	ths								
- delivery to Dubna										de	elive	i ery k	ру.	i sea_						
- tests & overall commissioni																				
NKMZ+ Mjrandini: Raw material for Yoke			-																	
- production forged bars and rings																				
- delivery to VHM																				
Vitkovice Heavy Machinery: Yoke																				
- final machining																				
- assembly test																				
- delivery to Dubna																				
ILK (Drezden) Cryo Sattelite																				
- design project																				
- production & delivery to Dubna																				
STU (Georgia): system of movement																				
- technical design																				
- production and delivery to Dubna																				
Solar (Belorus): laser geodesy system																				
CERN: the field measurement system																				
Readiness for MPD integration					the MPD Hall is available															

MAPS Inner Tracking System for ALICE LS2 Upgrade

J. Phys. G: Nucl. Part. Phys. 41 (2014) 087002

The ALICE Collaboration

Figure 1.1: Layout of the new ITS detector.

Figure 1.2: Schematic view of the cross section of the Inner Barrel (left) and Outer Barrel (right).

Table 1.1: Geometrical parameters of the upgraded ITS.										
	I	nner Barre	el	Outer Barrel						
	I	nner Layer	'S	Middle	Layers	Outer Layers				
	Layer 0	Layer 1	Layer 2	Layer 3	Layer 4	Layer 5	Layer 6			
Radial position (min.) (mm)	22.4	30.1	37.8	194.4	243.9	342.3	391.8			
Radial position (max.) (mm)	26.7	34.6	42.1	197.7	247.0	345.4	394.9			
Length (sensitive area) (mm)	271	271	271	843	843	1475	1475			
Pseudo-rapidity coverage ^a	± 2.5	± 2.3	± 2.0	± 1.5	±1.4	±1.4	± 1.3			
Active area (cm^2)	421	562	702	10483	13104	32105	36691			
Pixel Chip dimensions (mm ²)				15 imes 30						
Nr. Pixel Chips	108	144	180	2688	3360	8232	9408			
Nr. Staves	12	16	20	24	30	42	48			
Staves overlap in $r\phi$ (mm)	2.23	2.22	2.30	4.3	4.3	4.3	4.3			
Gap between chips in z (µm)				100						
Chip dead area in $r\phi$ (mm)				2						
Pixel size (μm^2)	(20 -	$30) \times (20)$	-30)	$(20-50) \times (20-50)$						

^a The pseudorapidity coverage of the detector layers refers to tracks originating from a collision at the nominal interaction point (z = 0).

_____

Leader: Luciano Musa

MAPS-DSSD or MAPS only? An attempt to keep synergy with CBM

2 layers of ALICE ITS MAPS inner layers of double length 4 layers of DSSD with readout through long (up to 100 cm) (a call for ASIC development)

MAPS-DSS ITS MPD

Layer	Туре	r, cm*	+-z	Area, m**2	Ladders	Det/Lad	Tot. Channels	Legend
1	MAPS	32,0	27,1	0,0562	16	9	93,6 M	2-d ALICE ITS-2
2	MAPS	39,0	27,1	0,0702	20	9	117,0 M	3-d ALICE ITS-2
3	DSSD	85,5	60,0	0,720	10	20	205 K (**)	2-d MPD ITS-1
4	DSSD	128,0	66,0	1,190	15	22	338 K (**)	3-d MPD ITS-1
5	DSSD	169,0	100,9	1,642	19	24	467 K (**)	4-h MPD ITS-1
6	DSSD	210,0	100,9	1,987	23	24	565 K (**)	6-d MPD ITS-1
тот				4,812			212 M	

MPD-ITS Layout

*) measured from the beam line to the center of the active area

**) every second strip read-out

Sensor Layers Description

MAPS: 15x30 mm², 2 mm dead area at long edge is hidden in a turbine

Sensor: 20x30 um pixels, thickness – 50 um.

CBM DSSD: $62x62 \text{ mm}^2$, 1 mm dead area around active area is hidden in a tile along the ladder (z) and in a turbine in (r- ϕ)

MPD ITS Geometrical Model (V.P.Kondratyev, SPbSU, SpB)

ITS comprises six layers of position sensitive Si sensors as follows

- 1) 2 Inner Layers of Monolithic Active Pixel Sensors (MAPS)
- 2) 4 Outer Layers of Double-Sided Silicon Detectors (DSSD)

Long-range Λ -hyperons in central JS=10 GeV Au+Au collisions

Short-range Λ -hyperons in central $\int S=10$ GeV Au+Au collisions

A-hyperon invariant mass spectrum $p_{+}>0$ and $p_{+}>0.6$ GeV/c

Super-nuclei hunt at NICA

J.Steinheimer et al. arXiV:1605.034039, May 11, 2016

Process	Threshold Energy [GeV]
$p + p \rightarrow p + p + J/\psi$	4.973
$p + p \to N + \Lambda_c + \overline{D}$	5.096
$p + p \to N + N + D + \overline{D}$	5.611

GSI-JINR project on infrastructure development

Our guests

The first shift and items manufactured

Perspectives for the in-beam tests at Nuclotron

Low voltage power suppliers:

AKTAKOM APS 3320L

High voltage power supplier:

R&D

p,d,

Chronology of Achievements

Organization of STS Consortium of teams in JINR-member countries (2008-2013)

Technological advance in Ultra-light (14 g/m) carbon Fiber Mechanics by Igolkin (2008-13)

Technological advance in the highest assembling density of module circuits based on TAB-bonding technology by Borshchov team sensor and cable design (2012-14)

Module assembly laboratory as a joint JINR-GSI effort (2014-15)

Welcome to NICA!

NICA Volga river Thanks to G. Trubnikov, V. Kekelidze and

J.Heuser for slides and the the audience "Physics at CBM", June 21-23 2016 forking, the antion!