

Identification of multi-nucleon transfer reaction products in ⁵⁰Ti + ²⁴⁹Cf

Antonio Di Nitto

on behalf of the TASCA Collaboration

TASCA16 26 August 2016

Outline

- Motivation
- Experimental setup
- Data analysis and results
- Discussion and summary

The reaction ⁵⁰Ti+²⁴⁹Cf at TASCA

- (Bρ)_c=2.01 Tm (set to collect Z=120)
- No perfect separator exists \rightarrow suppression of transfer is not 100%

Energy spectra

pulsed beam structure

 α -like events originated by transfer products and decay of SHE with Z=120

Correlation analysis performed

- ER-AL;
- ER-AL-AL;
- AL-AL;
- AL-AL-AL;

ER: E = 3-90 MeV, Beam ON, coinc. with ToF and anti -coinc. with punch-through det AL : E = =5-10 MeV, anti-coinc. with ToF and anti-coinc. with punch-through det

Ratio between LE and HE TLF components at FPD

Mean Ratio LE vs HE yields = 11.5 %

Energy spectra

Here are shown 5 α -spectra collected with different correlation conditions:

- during beam OFF period
- correlated with High Energy Transfer-like events
- correlated with Low Energy Transfer-like events
- 1st and 2nd α-particles correlated with High Energy Transfer-like events

The energy spectra of α - α correlation analysis are not presented because very similar to ER- α - α correlation analysis ones (purple and green in the left figure).

Advantages of CANDI

Identified nuclei

Multi-nucleon transfer described by Nuclear Molecule formation

S. Heinz et al., EPJA 51 (2015)

86

Z (reaction product)

87

88

85

120

84

da/dn (nb/sr)

da/dr) (nb/sr)

0.1

0.01

0.2

0.6

1.0

V/VON

1.4

1.8 0.2

0.6

1.0

v/v_{cN}

1.4

1.8

Kinetic Energies of Transfer Products

Considering enegy loss in passive layers and PHD

E _{si} (MeV)	Е _{сот} (MeV)
5	45
70	150

TKE formula for very asymmetric scission		²¹³ Rn	Exp.	Theor.	Vel.
$E_{\text{Viola}} = \left(0.1189 \frac{Z^2}{A^{1/3}} + 7.3\right) \frac{4Z_1 Z_2}{\left(Z_1 + Z_2\right)^2} \text{ MeV}$		$E_{CoT_{HE}}$ (MeV)	150	187	V: ->
		E _{CoT_LE} (MeV)	50	4	V: <-

Deformation of the separating system

- It is observed deformation increasing the amount of nucleon exchange, up to (2:1) for ²¹⁴Ra.

S. Heinz et al., EPJA 51 (2015)

8	$\sqrt{4\pi}$	$\left(Z_1 Z_2 e^2 \right)$	1
$\beta = \sqrt{\frac{5}{5}} \left(\frac{1}{5} \right)$	$\left(\overline{r_0 T K E(A_1^{1/3} + A_2^{1/3})}\right)$	-1	

Exp. TKE=144 MeV for ²¹³Rn indicates β_2 =1.49 (axis ratio 1:2.9 hyperdeformation)

	⁶⁴ Ni+ ²⁰⁷ Pb	⁵⁰ Ti+ ²⁴⁹ Cf
entrance channel	207 Pb β_2 =-0.00824 (spherical)	249 Cf β_2 =0.24 (deformed)
nucleon exchange	(²¹⁴ Ra) 7 Proj. →Target	(²¹³ Rn) 30 Targ. → Proj.
nuclear matter	Large overlap (E>>Bc)	Small overlap (E~Bc)

These differences can motivate the presence of larger deformation in the exit channel.

? No Way to explain the low energy peak in fact $V_{TKE} > V_{CN}$

Summary

- Identification of transfer reaction product of the system ⁵⁰Ti+²⁴⁹Cf;
- Nuclei originated by Pb contamination;
- Large deformation at the separation stage required to reproduce the HE peak

Outlook:

- Physical origin of the LE component
- Filling the gap investigating triple pile up