

Chemical Study of Element 113 (Nihonium) at GSI

Alexander Yakushev for E113 chemistry collaboration at TASCA

Nihonium – a proposed name for element 113

. . .

. . .

INTERNATIONAL UNION OF PURE AND APPLIED CHEMISTRY

For the element with atomic number 113 the discoverers at RIKEN Nishina Center for Accelerator-Based Science (Japan) proposed the name **nihonium** and the symbol **Nh**. Nihon is one of the two ways to say "Japan" in Japanese, and literally mean "the Land of Rising Sun". The name is proposed to make a direct connection to the nation

where the element was discovered.

2

Nihonium chemistry experiment at GSI

Collaboration

Spokesperson: A. Yakushev (SHE Chemistry, GSI) Co-spokesperson R.-D. Herzberg (University of Liverpool (UK), responsible for ENSAR cooperation)

A. Yakushev^{1,2}, Ch. E. Düllmann^{1,2,3}, L. Lens^{1,3}, M. Asai⁴, M. Block^{1,2,3}, H. Brand¹, H. David¹, J. Despotopulos⁵, A. Di Nitto^{1,3}, K. Eberhardt^{2,3}, U. Forsberg⁶, P. Golubev⁶, M. Götz^{1,2}, S. Götz^{1,2}, H. Haba⁷, L. Harkness-Brennan⁸, R.-D. Herzberg⁸, F. P. Heßberger^{1,2}, D. Hinde⁹, J. Hoffmann¹, A. Hübner¹, E. Jäger¹, J. Khuyagbaatar^{1,2}, D. Judson⁸, B. Kindler¹, Y. Komori⁷, J. Konki¹⁰, J. V. Kratz³, J. Krier¹, N. Kurz¹, M. Laatiaoui², S. Lahiri¹¹, B. Lommel¹, Ch. Lorenz⁶, M. Maiti¹², A. K. Mistry², Ch. Mokry^{2,3}, Y. Nagame⁴, J. P. Omtvedt¹³, P. Papadakis¹⁰, V. Pershina¹, D. Rudolph⁶, J. Runke^{1,3}, I. Rusanov¹, L. G. Sarmiento⁶, T. Sato⁴, P. Scharrer^{1,2}, B. Schausten¹, M. Schädel¹, J. Steiner¹, P. Thörle-Pospiech^{2,3}, N. Trautmann³, K. Tsukada⁴, J. Uusitalo¹⁰, A. Ward⁸, M. Wegrzecki¹⁴, N. Wiehl^{2,3}, E. Willams⁹, V. Yakusheva¹

Relativistic Effects on Valence AOs of SHEs (eV)

Courtesy V. Pershina

Adsorption of Cn, E113 and Fl on Gold

3 bridge hollow1 hollow2 top 2.5 2 E,eV 1.5 exp. 1 İ 114 Hg 0.5 112 0 n=1 n= 38 n=95 n= 38 n= 35 n=120 n=107 -0.5

 $-\Delta H_{ads, kJ/mol}$ 159 52 68 112 113 114

M-Au_n binding energies

Courtesy V. Pershina $E_{\rm b}, \, {\rm eV}$ ΔH_{ads} , eV Μ position, n Ref. (exp.) Hg bridge n=94 0.56 0.92 Eichler 0.54^{+0.4}-0.03 Cn hollow n=107 Eichler 0.46 Haennsler Pb bridge n=94 2.40 2.43 0.36 +0.5 114 bridge n=94 0.71 Eichler Yakushev ≥ **0.5** ΤI bridge n=16 2.65 2.48 Serov bridge n=16 1.34 113 (1.65)like highest occupied AO [Pershina, Anton, Jacob, JCP, 2009]

GSI Helmholtzzentrum für Schwerionenforschung GmbH

Theoretical predictions for Nh adsorption

Quartz	Gold
TI: 6s ² 6p _{1/2} ¹ Nh: 7s ² 7p _{1/2} ¹	
TI: \equiv Si(OH)(OTI) $-\Delta$ H _{ads} = 150.2 kJ/mol [V. Pershina, priv. com. (2016)]	TI: $(Au)_n TI - \Delta H_{ads} = 238 \text{ kJ/mol}$ [V. Pershina, priv. com. (2016)]
exp. [P. Steinegger et al $-\Delta H_{ads} = 158 \text{ kJ/mol}$ J. Phys. Chem. C 120 (2016)]	exp. [A .Serov et al. Radiochim. $-\Delta H_{ads} = 279 \text{ kJ/mol}$ Acta 101 (2013)]
Nh : ≡Si(OH)(ONh) –ΔH _{ads} = 57.8 kJ/mol [V. Pershina, priv. com. (2016)]	Nh: $(Au)_n Nh -\Delta H_{ads} = 115 \text{ kJ/mol}$ [V. Pershina, priv. com. (2016)] $(Au)_n Nh -\Delta H_{ads} = 96-116 \text{ kJ/mol}$ [A. Rusakov et al. Centr.Eur.J.Phys. 11 (2012)]

Members of the group 13 – TI and Nh – are most reactive between groups 12 to 14

GSI Helmholtzzentrum für Schwerionenforschung GmbH

Gas chromatography of thallium

8

First attempts on Nh chemistry at FLNR

8.853 MeV

TOP 11.3

13 h 35 min

TOP 11.3, 88.9 MeV

BOT 11.3, 70.2 MeV

17.2 s

Bh

SF

8.759 MeV

BOT 11.5

15 h 20 min

⁶⁸Db TOP 11.6, 46.2 MeV

BOT 11.6, 14.1 MeV

²⁷²Bh 9.4 s

 α_5

SF

8.747 MeV

TOP 11.7

85 h 13 min 54 s

TOP11.7, 36.3 MeV

BOT 11.7, 9.6 MeV

20 s

 α_5

SF

 α_1

 α_{2}

 α_3

8.73-9.15 MeV

27 h (+5, -4)

12.0 s (+3.1, -2.1)

 α_4

 α_{5}

SF

SF

8.781 MeV

BOT 11.12

Db TOP 11.13, 72.9 MeV

BOT 11.13, 90 MeV

9

23 h 32 min

13.2 s

Bh

 α_{5}

8.720 MeV

TOP11.12

⁶⁸Db TOP 11.12, 80.15 MeV

BOT 11.11, 91.6 MeV

1 h 55 min

Bh 2 s

 α_5

SF

First attempts on Nh chemistry at FLNR

Chemistry without preseparation

Fig. 7. Comparison of the α -sum (sum spectra from detector 1 to 27 of the COLD array [13,20]) normalized to the applied beam dose from experiments performed in 2007 [13,33] without preseparation (white spectrum) and with preseparation (black spectrum) [this work]. Both experiments used the nuclear reaction ⁴⁸Ca with ²⁴⁴Pu and were performed at the same gas flow conditions. The data are normalized to the target thickness of 0.44 mg/cm² ²⁴⁴Pu and 10¹⁸ ⁴⁸Ca particles. [D. Wittwer et al. NIM B 268 (2010)]

GSI Helmholtzzentrum für Schwerionenforschung GmbH

Figure 4 Typical alpha sum spectrum recorded as a decay chain of the element 113.

V(RC)=21 cm³, + quartz wool plug + 6 m cappilary

[S.N. Dmitriev et al. Mendeleev communications 24 (2014)]

Experimental setup at TASCA

GSI Helmholtzzentrum für Schwerionenforschung GmbH

12

Experimental conditions

- ⁴⁸Ca (5.47 MeV/u) + ²⁴³Am (0.8 mg/cm²)
- Experiment duration 20 days 4.4E18
- Beam integral
- RTC covered with Teflon
- Gas flow (He:Ar=1:1)
- RTC COMPACT1 cappilary 5 (10) cm long
- 1st COMPACT IC at room temperature

2nd COMPACT – TC (-10 °C.....-165 °C)

Au

SiO₂

24 cm³

2 L/min

Au

~60% (prelim.)

Results

- Chemical yield (measured for ¹⁸²Hg)
- Flush out time (measured for ¹⁸²Hg) ~100% within 1 s
- Nh transmission in TASCA with reduced field in Q2 20 to 30%
- 4 (3) events from ²⁸⁸Nh were expected at the overall efficiency from FI experiment (with reduced field in Q2)
- No $\alpha(n)$ SF decay chains were observed
- Non-observation of Nh in COMPACT points at a stronger reactivity of Nh compared to FI, as expected
- Two coincident SF events without α precursor
- Most probable origin of SF events is from Cn or FI \rightarrow
- This points at a possible EC decay in Nh or Mc (E115)

Summary and outlook

- First experiments on Nh chemistry performed at GSI
- Goal: gas chromatography of Nh on quartz and gold
- Despite 3-4 events were expected, no one was observed

Preliminary conclusions:

- Nh is more reactive than FI
- SF events, probably from Cn/Fl, point at a possible EC branch in Nh/Mc
- For conclusive experiment more beam time is needed direct measurement of Nh in FPD and in COMPACT