
The beginning of a success story

Химические свойства элемента 104

И. ЗВАРА, Ю. Т. ЧУБУРКОВ, Р. ЦАЛЕТКА, Т. С. ЗВАРОВА, М. Р. ШАЛАЕВСКИЙ, Б. В. ШИЛОВ

Content

- Reaction ²²Ne + ²⁴²Pu (0.7 mg/cm²; energy 113-115 MeV; \$\overline{\phi}\$ ≈ 2x10¹² s⁻¹\$)
- <u>2 gas chemistry experiments performed</u>
- 1st experiment: dose 4x10¹⁸ (600 h); chlorinating gas, 220-250°C; transit time along detectors 0.2 - 1.2 s. Observed: 4 SF events assigned to ²⁶⁰Rf (estimated yield 10 %).
- 2nd experiment: dose 0.6x10¹⁸ (90 h); 300-350°C; observed 8 SF assigned to ²⁶⁰Rf.

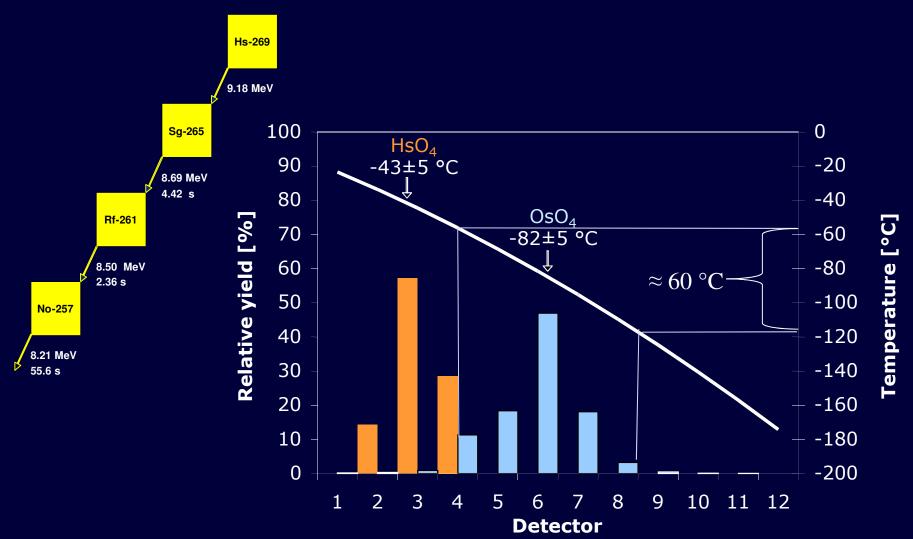
D UNIVERSITÄT BERN

OUTLINE

- Pro's and con's of gaschemistry as separation method
- Major achievements of on-line gas chemistry: from Dubna TC via OLGA to IVO
- Breakthrough in gas chemistry studies with transactinides: coupling to (gas-filled) separators

Ь						
U	N	IV	EF	15	ITÄT	1
B	E	RN	1			

Pro's and Con's


- <u>Pro of gas chemical separation</u>:
- → Easy coupling to accelerator and transport of reaction products to gas chemical device
- → Fast and continuous separation technique (down to ≈ 1 s separation time)
- \rightarrow Easy coupling to on-line detection of α and coincident SF events from separated products

Pro's and Con's

- Con of gas chemical separation:
- → Poor chemical separation factors (low number of theoretical plates)
- → Consequence: Contamination of separated species with products of similar volatility
- → In TC (mostly used in recent studies): background from products with higher volatility than the studied product (decay during transport in column; Example: Rn)

OsO₄ & HsO₄: poor resolution!

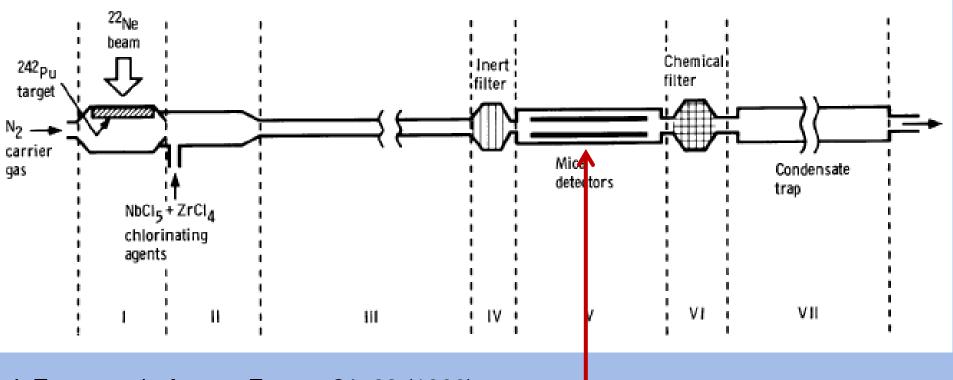
Slide from C.E. Düllmann

Application of gas chemistry restricted to

- → Products with favorable decay chains (mother with exceptional high α -decay energy & daughter with very short half-life). Example: ²⁸³Cn (E_{α} = 9.4 MeV; T_{1/2} = 3s) → ²⁷⁹Ds (SF; 0.3 s). Example which failed: ²⁸⁹Fl (T_{1/2} = 2.7s) → ²⁸⁵Cn (T_{1/2} = 34s) → ²⁸¹Ds (T_{1/2} = 9.6s)
- → Breakthrough: Operate gas chemistry set-up behind a (gas-filled) separator (BGS, <u>TASCA</u>; GARIS; DGFS)

D UNIVERSITÄT BERN

OUTLINE

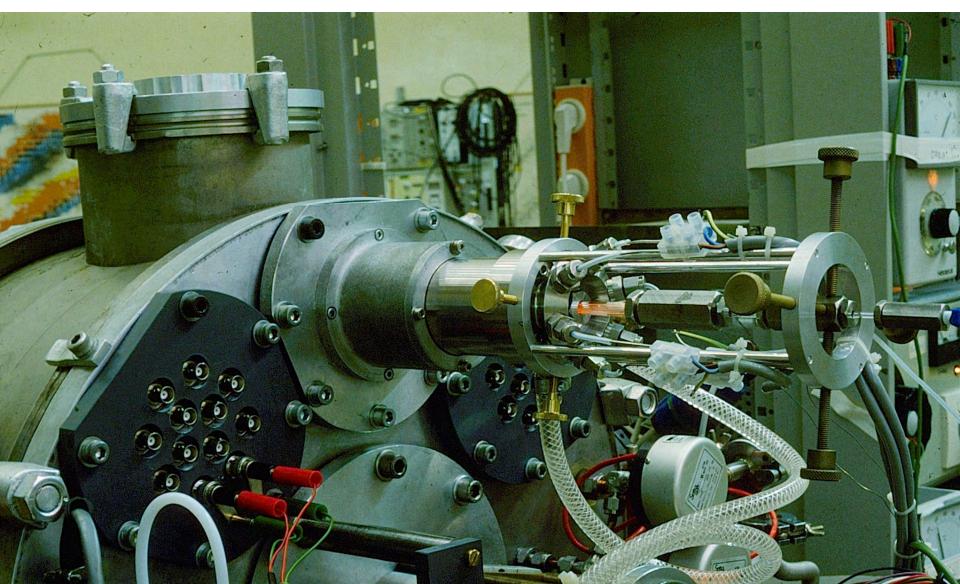

- Pro's and con's of gaschemistry as separation method
- Major achievements of on-line gas chemistry: from Dubna TC via OLGA to IVO
- Breakthrough in gas chemistry studies with transactinides: coupling to (gas-filled) separators

UNIVERSITÄT BERN

Device used for the first gas chemical study of Rf

I. Zvara et al., Atomn. Energ., 21, 83 (1966)

Detection of SF products via fission-track counting


Drawback: No identification of nuclide possible

OLGA I (On-Line Gaschemistry Apparatus)

First on-line gas chemistry separation device coupled to an on-line detection (α & SF)

Search for volatile SHE in:

⁴⁸Ca+²⁴⁸Cm, P. Armbruster et al., PRL, **54**, 406 (1985))

OLGA II (H. Gäggeler et al. NIM, A309, 201 (1991) Study of Db bromide (H. Gäggeler et al., RCA, 57, 93 (1992))

Separation time \geq 10 s

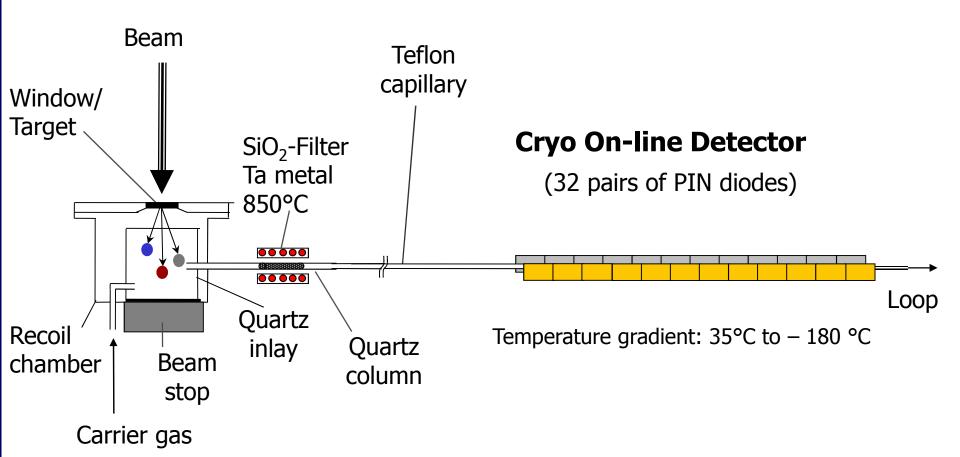
Gas Chromatography: OLGA III

Reactive gas Cl₂/SOCl₂/O₂

He/C-Aerosol Gas-jet

> Reaction oven 1000°C Quartz wool plug

Quartz column Recluster unit


Separation time: few seconds

HRGC MEGA 2 set

First chemical study of

Sg (M. Schädel et al., Nature, **388**, 55 (1997)) and of Bh (R. Eichler et al., Nature, **407**, 63 (2000))

IVO (*In-situ Volatilization and On-line detection*) technique

First chemical studies of Hs (in form of HsO₄) (C.E. Düllmann et al., Nature, **418**, 859 (2002) Cn (in elemental form) (R. Eichler et al., Nature, **447**,72 (2007)) & Fl (in elemental form) (R. Eichler et al., RCA, 98, 133 (2010))

Pre-cleaning via gas filled separator

- Discussed during workshop@ LBL (May 1997): Chemistry behind BGS (E.K. Gregorich: organizer)
- Proposal by PSI heavy element chemistry group (A. Türler): gas chemistry experiment with group-8 element 108 (Hs) in form of its tetroxide
- Now world leading in chemistry behind a pre-separator: TASCA@GSI

- On-line gas chemical separations unique in chemical studies of heaviest elements with short half-lives
- No coupling to separator only possible if favorable decay chains
- Coupling to separator enables chemical studies irrespective of nuclear decay properties
- Actually worldwide efforts to study Nh (E113) and Sg carbonyls
- Future efforts to speed-up separation via gas stopping cell technology
- > Yields vacuum chromatography cleaner surfaces?