

Measurements of the first ionization potentials of the heaviest actinides

T. K. Sato

Advanced Science Research Center

Japan Atomic Energy Agency

Collaboration

M. Asai

N. Sato

Y. Kaneya

K. Tsukada

A. Toyoshima

M. Schädel

Y. Nagame

A. Mitsukai

- A. Vascon H. Makii
- S. Takeda

M. Sakama

D. Sato

K. Ooe

S. Miyashita

T. Stora A. Osa S. Ichikawa A. Borschevsky E. Eliav **U. Kaldor R. Eichler** V. Pershina

JGU

J. Grund

D. Renisch

Ch. E. Düllmann

J. V. Kratz

K. Eberhardt

P. Thörle-Pospiech

J. Runke

N. Trautmann

Contents

 Measurements of the first ionization potential (IP1) of the heavy actinides at JAEA

- 2) Recent activities at JAEA
 - Adsorption behavior of lawrencium (Lr, Z=103) on Ta surface

IP1 measurements of heavy elements

LETTER

doi:10.1038/nature14342

Measurement of the first ionization potential of lawrencium, element 103

T. K. Sato¹, M. Asai¹, A. Borschevsky^{2,3}, T. Stora⁴, N. Sato¹, Y. Kaneya^{1,5}, K. Tsukada¹, Ch. E. Düllmann^{3,6,7}, K. Eberhardt^{3,7}, E. Eliav⁸, S. Ichikawa^{1,9}, U. Kaldor⁶, J. V. Kratz⁷, S. Miyashita¹⁰, Y. Nagame^{1,5}, K. Ooe¹¹, A. Osa¹, D. Renisch⁷, J. Runke⁶, M. Schädel¹, P. Thörle-Pospiech^{3,7}, A. Toyoshima¹ & N. Trautmann⁷

The chemical properties of an element are primarily governed by spallation reaction of uranium¹⁴. IP₁ values of heavy elements with the configuration of electrons in the valence shell. Relativistic effects $Z \ge 100$, however, could not be determined experimentally, because influence the electronic struct

of the periodic table, and the seventh row—including the *i* configurations¹². Atomic *s* an ivistic effects, whereas p_{325} *d* ground-state configurations o of lighter elements in the sam (IP₁) is a measu

T. K. Sato *et al. Nature* 520 (Apr.9) (2015) 209-211.

Electronic configuration of heavy elements influenced by strong rel. eff.

BIOLOGY BY THE NUMBERS Data analysis is undervalued Green-house gas release

in the life sciences

PAGE 151

Experiments on rare lawrencium atoms illuminate a relativistic region of the periodic table PAGES 166 & 209

RESEARCH CAREERS

POSTDOC OF

THE FUTURE

Why permadocs must

become superdocs

nature

THE INTERNATIONAL WEEKLY JOURNAL OF SCIENCE

9 April 2015 £10 Vol. 520, No. 7546 9 1770028°083095

O NATURE.COM/NATUR

Experimental determination of the first ionization potential (IP1)

may be slow but prolonged

PAGE 171

Low production rate and/or short half-lives

A NEW IP1 measurement method based on surface ionization process

Ionization eff. (I_{eff}) \implies Effective IP₁ (IP₁*)

Experimental setup

Experimental setup

Experimental setup

IP1 measurement of Lr

Isotopes	: ⁸⁰ Rb, ^{142,143} Eu, ¹⁴³ Sm,
	¹⁴⁸ Tb, ^{153,154} Ho, ¹⁵⁷ Er,
	¹⁶² Tm, ¹⁶⁵ Yb, & ¹⁶⁸ Lu
Beam	: ¹¹ B(67.9 MeV)
Targets	¹³⁶ Ce, ¹⁴¹ Pr, ¹⁴² Nd, ¹⁴⁷ Sm,
	Eu, ¹⁵⁶ Gd, ¹⁵⁹ Tb,
	¹⁶² Dy, and Ge
Ionization temp.: 2700K	
S-L eq.	
$I_{\rm off} = -$	$N \exp\left((\phi - \Pi_1^*)/kT\right)$
1	$+N\exp\left((\phi-\mathrm{IP}_{1}^{*})/kT\right)$
	in the present system

Isotope: ${}^{256}Lr (T_{1/2} = 27 \text{ s})$ Beam : ${}^{11}B (67.9 \text{ MeV})$ Target : ${}^{249}Cf (260 \mu \text{g/cm}^2)$ Ionization temp.: 2700K

Isotope: ${}^{256}Lr (T_{1/2} = 27 \text{ s})$ Beam : ${}^{11}B (67.9 \text{ MeV})$ Target : ${}^{249}Cf (260 \mu \text{g/cm}^2)$ Ionization temp.: 2700K

 $I_{\rm eff}(Lr) = 33 \pm 4\%$ in the present system

Isotope: ${}^{256}Lr (T_{1/2} = 27 \text{ s})$ Beam : ${}^{11}B (67.9 \text{ MeV})$ Target : ${}^{249}Cf (260 \mu \text{g/cm}^2)$ Ionization temp.: 2700K

 $I_{eff}(Lr) = 33 \pm 4\%$ in the present system

Isotope: ${}^{256}Lr (T_{1/2} = 27 \text{ s})$ Beam : ${}^{11}B (67.9 \text{ MeV})$ Target : ${}^{249}Cf (260 \mu \text{g/cm}^2)$ Ionization temp.: 2700K

 $I_{\rm eff}(Lr) = 33 \pm 4\%$ in the present system

Isotope: ²⁵⁶Lr ($T_{1/2} = 27 \text{ s}$) Beam : ¹¹B (67.9 MeV) Target : ²⁴⁹Cf (260 µg/cm²) Ionization temp.: 2700K $I_{eff}(Lr) = 33 \pm 4\%$ in the present system

TASCA16 @ GSI, Darmstadt, Germany, August 26, 2016

 $IP_1(Lr) = 4.96 \pm 0.08 eV$

 257 No ($T_{1/2} = 24.5 \text{ s}$) : 248 Cm(13 C, 4n) 251 Md ($T_{1/2} = 4.27 \text{ min}$) : 243 Am (12 C, 4n) 249 Fm ($T_{1/2} = 2.6 \text{ min}$) : 243 Am (11 B, 5n)

IP*/ keV

 this work
 6.53 ± 0.11
 6.59 ± 0.10
 6.63 ± 0.08

 [1] J. Sugar, J. Chem. Phys. 60 (1974) 4103.

We successfully measured IP₁ values of Lr ~ Fm using the surface-ionization method.

Lr: IP₁(Lr) = 4.96±0.08 eV → Lr: [Rn]5 $f^{14}7s^27p_{1/2}$ ↔ Lu : [Xe]4f^{14}6s^25d

No: $IP_1(No) = 6.63 \pm 0.08 \text{ eV}$ \rightarrow full-filled 5f orbitals

 $\mathbf{Fm} \rightarrow \mathbf{No} \rightarrow \mathbf{Lr}$

Similar to $Er \rightarrow Yb \rightarrow Lu$

Actinide series would be terminated with Lr.

Adsorption behavior of Lr on Ta surface

Is Lr a p-element?

Is Lr a p-element?

Is Lr a p-element?

* R. Eichler, private communication

