PANDA LVI. Collaboration Meeting

PASTTREC tests in Krakow

Paweł Strzempek

Jagiellonian University

Bochum

2 March 2016

Plan

- 1) FT prototype reminder
- 2) FT prototype tests results in Krakow
 - efficiency
 - spatial resolution
 - ToT separation
- 3) Conclusion and outlook

Reminder/status

What we have:

- 30 front end electronic boards with PASTTRECv1 bonded
- 2 front end electronic boards with new PCB design
- Fully operational set-up in Krakow with 96 FT straws

FEB with PASTTRECv1 properties:

- 2 PASTTREC ASIC on one PCB
- 2x8 digital and 2x8 analog channels
- Each FEB has 2 test inputs odd and even channels
- +/- 6 V power supply (due to fast analog amplifiers which will be removed in final version of the FEE)
- Ribbon cable (10 pairs) to connect to TRB3 slow control and data transmission

New FEB with PASTTRECv1

Main changes:

- Better low voltage regulators (6 \rightarrow 3.3V).
- Less analog output drivers soldered (4 channels), less power consumption.
- Printed circuit board redesigned.

Old FEB

New FEB

Low voltage	Old FEB (current [A])	New FEB (current [A])
+6 V	0.48	0.25
-6 V	0.25	0.06

Reminder

- The optimal tail cancellation settings have been found.
- The baselines for all 96 channels have been tuned.
- For cosmic rays data collection gain 1 and peaking time 20 ns has been selected. Data collection is triggered via two scintillators coincidence.

Analog pulses from ⁵⁵Fe presenting different tail cancellation settings. The settings of the black waveform was used for cosmic rays data acquisition.

Presentation of baseline tune procedure with iron source.

Data taken

High voltage	Threshold level	Triggers
1700 V	21 mV	30k
1800 V	21 mV	52k
1900 V	21 mV	46k
1700 V	5 mV	47k
1800 V	5 mV	48k
1900 V	5 mV	48k

The amount of data taken with cosmic rays.

FT efficiency estimation

The algorithm for efficiency estimation is as following: out of all events only events with exactly one hit per layer1,2,5,6 is selected (4 hits per event). There is a track fitted to the center of straws in module 1 and module 3. Then it is checked if on the way of the track there is one or two hits in the module 2 (the middle one). The hits in the middle layer distanced by less than 25 mm from reconstructed track are consider to belong to the track. If, with such a criteria, there is a hit in module 2 belonging to the track, then the detector is efficient otherwise it is inefficient.

Efficiency results

Threshold 21 mV

High voltage on the straws	1700 V	1800 V	1900 V
Efficiency if at least 1 straw fired in module 2	97.40	98.13	98.07
Efficiency if at least 2 straw fired in module 2	89.65	96.49	94.29

Threshold 5 mV

High voltage on the straws	1700 V	1800 V	1900 V
Efficiency if at least 1 straw fired in module 2	97.93	98.08	97.96
Efficiency if at least 2 straw fired in module 2	95.62	96.30	88.69

Lower efficiency due to noise?

Inefficiency justification

Example of an event contributing to the detector inefficiency.

Data analysis - preparation

- Drift time to radius calibration with uniform illumination method
- Drift time offsets elimination (different cable length compensation)
- Data filtration (events with exactly one hit per layer selected – 6 hits per events) resulting in 5-8kEvents.
- Track finding:

- Prefit to the center of straws using TlinearFitter
- Fit to the drift radius using TMinuit

Event display

Drift time and ToT (21 mV)

Time [ns]

Sigma = 284µm

ToT calibrated (21 mV)

 $sep = \frac{ToT \ 1 - ToT \ 2}{\Delta ToT \ 1 + \Delta ToT \ 2}$ Separation¹⁷⁰⁰⁻¹⁸⁰⁰ = 2.12

Separation¹⁸⁰⁰⁻¹⁹⁰⁰ = 3.54

Drift time and ToT (5 mV)

Residuals distribution (5 mV)

1700V

residualHist

Entries

600

1800V

1900V

ToT calibrated (5 mV)

Mean ToT for each track with 20% truncation

-150

-100

-50

1900V

dt vs tot calibHist

Separation¹⁷⁰⁰⁻¹⁸⁰⁰ = 1.66

Separation¹⁸⁰⁰⁻¹⁹⁰⁰ = 2.40

dt vs tot calibHist

32829

-20.75

527.6

37.21

153.8

Entries

Mean x

Mean y

RMS x

RMS y

150

Drift time [ns]

200

100

50

Conclusions and outlook

- Lower threshold improves spatial resolution but worsen ToT separation,
- There is still room form improvement by adding more straw layers,
- Continue with cosmic ray measurement in Krakow (faster shaping 15 ns)
- Preparation set-up in Juelich (cosmic rays and later beam)
- Preparation for the beam test (22.04.-02.05.2016)
 - Measuring at different beam momenta (STT: single TRB 176 channels, FT: single TRB 96 channels)
 - Measuring with different thresholds (STT: single TRB 176 channels, FT: single TRB 96 channels)
 - Checking different PASTTREC settings (STT: single TRB 176 channels, FT: single TRB 96 channels)

Thank you for your attention!

pawel.strzempek@uj.edu.pl

Acknowledgments: Project is supported by NCN [DEC-2013/09/N/ST2/02180]