

MVD services and requests

- MVD services
- DCDC circuits
- Optoelectronic (GBTx + VTRX) boards
- Cooling plant
- Services on platform in front of the magnet

Daniela Calvo

MVD services

MVD services

24 blocks arranged in 3 sectors (2112 DCDC circuits)

12 staves equipped with 16 optoboards each (old number)

• Space for intermediate connectors

• Space for cooling manifolds

Shift backward of the pump 20 cm already requested ? answer

MVC

Interaction with BEMC during the installation

- BEMC slides on the MVD services
- All cables, connectors, etc. must fit into the hole of the BEMC
- Long cables directly connected from MVD services to the racks are possible, but have to be supported for several meters. The connectors can be a issue.
- Patch panels for MVD, as close as possible to entry port of MVD services

MVD services

Pipe holders

- Glued
- Fixed on welded boss

MVD services - DCDC circuits

MVD service - DCDC circuits

24 blocks arranged in 3 sectors (2112 DCDC circuits)

4 PCBs (left and right difference) housing 22 DCDC circuits each

First prototype

MVD services – first prototype

88 DCDC circuits (22 DCDC circuits each row)

Weight (without cables): ~ 1.3 Kg

Dimension (without cables):

455 mm (with cooling connectors) x 85 mm x 63 mm

The total weight (without cables) of all the 24 blocks is ~ 32 Kg By adding the optoelectronic boards staves the

by adding the optoelectronic boards staves the total weight is ~ 55 Kg, without cables.

MVD services - Request

Available cross section: 56000 mm²

(between beam pipe and inner BEMC diameter)

Cooling pipes and supports: 9000 mm²

(dashed ring – challenge solution!)

DCDC circuits leave only ~ half of cross section for cables (needed cross section: 23500 mm²

) and they will fill the empty parts between the circuits anyway.

(not recommended!)

About ONLY HALF of the needed CROSS SECTION is AVAILABLE for cables (too segmented space!)

IT IS NECESSARY MORE SPACE around the beam pipe for the MVD

Ø156

80

0310

First DCDC stave prototype

First DCDC stave prototype

Cables from power supplies – max diameter: complex handling of all the wires on the top of the DCDC circuits. The bottom part has to be still tested.

Cables to the readout - max diameter : ok

Tested power : ~ 7,6 W/ch

DCDC circuit efficiency (measured): ~ 63%

Expected T on the DCDC circuit (with ideal contact and T of input water of 18C): ~ 32 °C

Measured T on the DCDC circuit (with thermal pad and T of input water of 16 C, and only a part of the dcdc circuits powered): up to 34 °C

MVD services – Optoelectronic boards

Optoelectronics board, old version

Optoelectronic board, new version – GBTx + VTRX

GBTx and VTRX on opposite sides, then 4.8 Gbit/s signals routed using vias Two power supply connectors to fit the routing of the power supply cables, in fact two mounting configuration of the boards are foreseen.

Additional chip to distribute the SC out signal to the two connectors towards the FEE. The cooling of the GBTx in this configuration should be easier (to be verified!). The board dimension is larger than the estimated values (3 years ago) anyway.

86 mm

Opto. board, new version – board routing

Opto. board, new version – board number

Each connector includes : 5 e-links + SC signal

22 additional boards

- to maintain the symmetry left- right during the routing of the semi disks and semi cylinders of the barrel part
- to be able to send the SC signal to each pixel or strip module without connection between different modules

It is necessary to increase the GBT board number from 192 to 214.

It means 2 additional optoelectronic boards each bar, one each side (solution?)

Opto. board, new version - adapted to ToPix4

First prototype of the optoelectronic board

The two connectors for the e-links and SC signal of the final version have been adapted in this case to work with ToPix4

A possible solution and drawbacks

- Additional 80 mm to arrange the 192 longer optoelectronics boards
- Additional 120 mm to avoid interference between optical fibers and signal cables
- Additional 86 mm to arrange an additional board along the rod

Possible solution ?: to shift upstream the beam pipe flange

A DCDC block (or partial block) has to be cut out, anyway!, if we follow this solution... but the distance from the module readout (up to ~ 30 cm) is too much for the aluminum cables and the cooling manifolds

IT IS NECESSARY MORE SPACE around the beam pipe for the MVD

Alternative solutions !

First solution

First solution

- Additional boards on the top of the staves, in a staggered configuration
- Use of all the space between the existing stave and the MVD services limit (~ 17.5 mm)
- Routing of this part not easy anyway
- Cable cross section available at this level is reduced.
- Additional cooling request. To be investigated

Second solution

Second solution

- Additional staves on the top of the existing staves
- Large overhang in the clearance MVD-BEMC
- Routing of this part not easy anyway
- Cable cross section available at this level is strongly reduced.
- Additional cooling request and pipes.

Alternative solution

Third solution

- Rotate the optoboards on the staves (perpendicular)
- Routing of this part not easy anyway
- Available cable cross section reduced, at this level.
- Additional cooling request. To be investigated

Interferences upstream the MVD

MVD services – Cooling plant

Cooling plant ouside the pit

Cooling plant inside the pit

RETURN RACKS (PIXEL, STRIP, SERVICES)

INLET PUMP + WATER CLEANING UTIT

Cooling plant - line paths inside PANDA Hall

MVD services in front of the magnet

Patch panels for cables - request

Patch panels for MVD cables positioned close the BEMC support (left and right) with duct to route cables from racks.

A specific system could move and rotate the duct for positioning the patch panels at the external side of the racks, during the installation of detectors.

The system could be positioned on the top of the racks

Routing of the cooling pipes and patch panel - request

The duct for the cooling pipes to the patch panels needs to be positioned under the platform floor

It should be a solution to foresee also the patch panel (for the cooling part) under the platform during the detectors installation. A system could move and rotate the patch panel to the final position, near the BEMC support. But it is necessary to go trough the platform floor.

Patch panel Duct - cooling pipes platform Vertical section platform

Input about the electronic system in the racks close the appparatus

- · Channels to be powered
- Boards, controllers, power supplies
- Power and cooling requirements
- Place requirements
- Cable cross sections, connector types, ...

Daniela Calvo (INFN-Torino) on behalf of the MVD group

Environment

- TID: O(1 Gy) (from PANDA. From hall/ beam:?)
- NIEL: ?
- Residual magnetic field: O(10-100 mT)
- EM interferences: ?

Numbers

RACKS near PANDA									
		channel				mainframe	mainfram	power/mainf.	
		n.	module	V,I (max.)	module n.	type	e n.	[kW]	U/crate
	Low Voltage-readout		CAENa25						
PIXEL part	(A&D)	608	19a	15V,5A	76	SY4527	5	3	8
			CAENa15						
	High Voltage	176	20p	500V, 15 mA	15	SY4527	2	3	8
	Optoelectronic boards		CAENa25						
	(1.5&2.5)	368	19a	15V,5A	46	SY4527	3	3	8
					14 LV e 1				
	LV & HV safety factor				HV	SY4527	1	3	8
STRIP Part									
						Wiener			
	Low Voltage	676	8016i	15V, 5A	85	MPOD	9	3	9
						ISEG			
	High Voltage	296	ECH	500V, 5 mA	20	ECH_44A	2	1,2	8
General part									
	pressure sensors(power		to be	NSCSANN006BAUNV,					
	&readout& transmission)	170	defined	12V,2A			4	1	3
	on detector/interlocks	25	custom				1	1,2	8

Numbers

mainframe	mainframe	power/mainf.		rack space		Total power	
type	n.	[kW]	U/crate	[U]		[kW]	Notes
SY4527	5	3	8	40		15	2 U per air cooling/each Mainf.: 10U
SY4527	2	3	8	16		6	2 U per air cooling/each Mainf.: 4U
SY4527	3	3	8	24		9	2 U per air cooling/each Mainf.: 6U
SY4527	1	3	8	8		3	2 U per air cooling/each Mainf.: 2U
							24 U
Wiener							
MPOD	9	3	9	81		27	
ISEG	Э	1 0	o	16		2.4	2 U per air cooling/each
ECH_44A	2	1,2	0	10		۷,4	Iviaini20
taba							
defined	4	1	3	12		3	power
custom	1	1.2	8	8		1.2	estimated values for the power
		,		205	Total U crates	66.6	
				24	Total U for	,-	
				240			
				229	I U IAL U RACKS		
						IOTAL POWER	

Inside the rack – PS CAEN SY4527 - example

Racks - request

Use the racks starting from the top (229 U (including cooling space – 50% left and 50% right).

MVD patch panels

Racks - request

170 Pressure sensors to be

- powered
- read-out

With, alternatively:

- Boards to be arranged in the racks + local PLC to be connected with the MVD cooling plant
- 2. Cables along all the MVD cooling pipe duct up to the cooling plant

Racks – patch panels – MVd service - MVD

Cross sections – summary 2016

Section name	HV	Optical fibers	LV GBT		LV FEE	Total	
A1	477	440	56	28		1001	
	1.3	1	8.5	7			
	633	346	3176	1077		5232	
	809	440	4044	1372		6665	
A2					300	300	
					7.5		
					13226	13226	
					16840	16840	
A (A1 + A2)						1301 18458 23505	

Cable number Cable diameter [mm] Total cable section [mm²] Total cable section x $4/\pi$ [mm²]