
M
em

be
ro

ft
he

H
el

m
ho

ltz
-A

ss
oc

ia
tio

n

JDRS for ToPix4

01.03.2016 Alessandra Lai



M
em

be
ro

ft
he

H
el

m
ho

ltz
-A

ss
oc

ia
tio

n

JDRS: Jülich digital readout system

Qt user interface
Former version
With new version come new features

Git repository

Summary

01.03.2016 Alessandra Lai Slide 2



M
em

be
ro

ft
he

H
el

m
ho

ltz
-A

ss
oc

ia
tio

n

JDRS: Jülich digital readout system

Data conversion and
communication with the PC:

ML605 evaluation board (Virtex-6
FPGA)

firmware (VHDL)

Configuration and data handling:

PC

MVD readout framework (MRF)
Qt-based GUI

01.03.2016 Alessandra Lai Slide 3



M
em

be
ro

ft
he

H
el

m
ho

ltz
-A

ss
oc

ia
tio

n

MRF: MVD readout framework

Four abstraction layers isolate low level from higher level functions:

physical layer
−→ ethernet connection between
ML605 and PC

generic access layer (GAL)
−→ data transfer and formatting
e.g. open a connection, send and receive
data packages...

transport access layer (TAL)
−→ board-specific functions
e.g. the clock generation, flush of data
buffers...

chip access layer (CAL)
−→ DUT-specific functions
e.g. configuration and data readout...

01.03.2016 Alessandra Lai Slide 4



M
em

be
ro

ft
he

H
el

m
ho

ltz
-A

ss
oc

ia
tio

n

Qt - ’cute’ framework

Qt is a widely used framework for developing application software with
graphical user interfaces (GUIs) but not only (e.g. command-line tools).

open source

cross-platform (Linux, Windows, Android, Mac, ...)

uses system resources (i.e. the app gets a native look)

supports standard C++

signals and slots mechanism (for event handling)

supports several compilers (e.g. GCC, Visual studio)

supports threading for parallel programming

supports a designer for the layout of the UI

...

01.03.2016 Alessandra Lai Slide 5



M
em

be
ro

ft
he

H
el

m
ho

ltz
-A

ss
oc

ia
tio

n

Former version

Originally designed for beam test measurements −→ suffered from strict
time constraints, quick implementation and workarounds:

environment dependency

lack of modularity and flexibility

lack of structure

hard coded settings and magic numbers
in the code

extreme sensitivity to external changes

cumbersome for inexperienced users

max reliable readout frequency ' 50
MHz

data from chip handled by FairMQ
→ cumbersome and not necessary for
lab measurements

The code to generate the
whole GUI in a single file

≈ 2000 lines!

01.03.2016 Alessandra Lai Slide 6



M
em

be
ro

ft
he

H
el

m
ho

ltz
-A

ss
oc

ia
tio

n

Refactoring process: strategy

The idea is to make the existing framework modular by separating the func-
tionalities in indipendent projects.
Each project consist of, at list:

a .pro file

a standard C++ class

a form (i.e. the actual UI)

Rule of thumb: one project per tab.

Caveat
Comunication between projects is needed (e.g. an event that occurs in one
tab might trigger an instruction in another tab).

One main window that contains all the other tabs as sub-widgets.

01.03.2016 Alessandra Lai Slide 7



M
em

be
ro

ft
he

H
el

m
ho

ltz
-A

ss
oc

ia
tio

n

Main window and widgets

Each widget:

is an indipendent project that can be executed standalone

is included in the main window to build up the full gui

is connected to the others, if needed, through the main window

The main window:

holds the sub-widgets

performs the connections between signals and slots

initiates and distributes the global information

01.03.2016 Alessandra Lai Slide 8



M
em

be
ro

ft
he

H
el

m
ho

ltz
-A

ss
oc

ia
tio

n

GUI structure

main window

UDP connect.. clock settings DAC settings pixelMask

* _dutcontrol * _pixelConfig * _pixelReadback

connect

connect

connect

connect

connect

signal slot signal slot

01.03.2016 Alessandra Lai Slide 9



M
em

be
ro

ft
he

H
el

m
ho

ltz
-A

ss
oc

ia
tio

n

The MRF
The MRF is now a library that can be built indipendently.
It has its own .pro file but no UI.
−→ replace the files ’include’ with the library include

SOURCES += main.cpp\
mainwindow.cpp \
topix4_fairmq_readout.cpp \
../writetofile.cpp \
../../MRF/source/mrfdata_chain2ltc2604.cpp \
../../MRF/source/mrfdata_chainltc.cpp \
../../MRF/source/mrfdataadv2d.cpp \
../../MRF/source/mrfdataadvbase.cpp \
../../MRF/source/mrfcal_topix4.cpp \
../../MRF/source/mrfcal.cpp \
../../MRF/source/mrftal_rbtopix4.cpp \
../../MRF/source/mrftal_rbbase_v6.cpp \
../../MRF/source/mrftal_rbbase.cpp \
../../MRF/source/mrfdataregaccess.cpp \
../../MRF/source/mrfdataadv1d.cpp \
...

HEADERS += mainwindow.h \
topix4_fairmq_readout.h \
../writetofile.h \

...

LIBS +=
-L$${PROJECTPATH}/JDRS_core/MRF/lib -lMRF

01.03.2016 Alessandra Lai Slide 10



M
em

be
ro

ft
he

H
el

m
ho

ltz
-A

ss
oc

ia
tio

n

Load and save settings
Settings (e.g. configuration data) are stored in files .json
→ Qt offers support for JSON

easy access to the key-value pairs in the files

human readable format

"CommandCCR0" : 32,
"CommandCCR1" : 33,
"CommandCCR2" : 34,
"CounterMode" : 1,
"CounterEnable" : 1,
"ReadoutCycleHalfSpeed" : 1,
"FreezeStop" : 4,
"Leak_P" : 1,
"SelectPol" : 1,
"PreEmphasisTimeStamp" : 1,
"PreEmphasisCommands" : 1,
"CounterStopValue" : 4095

"CalLevelDac" : 5000,
"VCasIlc" : 45580,
"VCasIfb" : 40350,
"VRefBaseline" : 37600,
"notUsed1" : 0,
"notused2" : 0,
"VRefD" : 37300,
"VCasD" : 32450

A similar format is available for the pixel configuration as well

the key is the row number (nKeys = nRow = 32)

the value is a 20 entries array (nCol = 20)
01.03.2016 Alessandra Lai Slide 11



M
em

be
ro

ft
he

H
el

m
ho

ltz
-A

ss
oc

ia
tio

n

Data handling
The data coming from the chip at the moment is not handled by FairMQ.
The data buffer is read (and emptied) when needed and the data is stored
in a file.
Two possibilities for data storage:

ASCII boost serializer

From the GUI select:

filename and path

the saving method

The new interface allows to add new methods for storing the data
(e.g. FairMQ, powerful for beam tests).

01.03.2016 Alessandra Lai Slide 12



M
em

be
ro

ft
he

H
el

m
ho

ltz
-A

ss
oc

ia
tio

n

Readback

One way to check if the process of writing to the chip was successfull is to
read back the data coming from it.

All the data that is written to the chip (configuration values, pixel status, etc)
can be read back and visualized in the GUI.

For example the pixel mask status.

01.03.2016 Alessandra Lai Slide 13



M
em

be
ro

ft
he

H
el

m
ho

ltz
-A

ss
oc

ia
tio

n

01.03.2016 Alessandra Lai Slide 14



M
em

be
ro

ft
he

H
el

m
ho

ltz
-A

ss
oc

ia
tio

n

Measurements

One part of the gui is dedicated to measurements.
The aim is the full qualification of the ToPix chip.
Each pixel has an internal circuit that allows the injection of a certain amount
of charge.

The charge is given in terms of
DAC values.

01.03.2016 Alessandra Lai Slide 15



M
em

be
ro

ft
he

H
el

m
ho

ltz
-A

ss
oc

ia
tio

n

Measurements: visualization

Row 1, 16, 31 enabled.

01.03.2016 Alessandra Lai Slide 16



M
em

be
ro

ft
he

H
el

m
ho

ltz
-A

ss
oc

ia
tio

n

Git repository

The JDRS is under version control on Git (firmware and software)

JDRS core (git submodule)

JDRS ToPix

The core repository contains all the JDRS basic functionalities (UDP
connection, register access, chip configuration, ...)
=⇒ 100% reusable for PASTA

The ToPix repository contains ToPix specific functionalities
=⇒ partially reusable for PASTA (adaptations are required)

It is sufficient to checkout the repo and run the JDRS (config file included).
Dependencies:

boost library root

01.03.2016 Alessandra Lai Slide 17



M
em

be
ro

ft
he

H
el

m
ho

ltz
-A

ss
oc

ia
tio

n

Summary

the JDRS is under development
before starting with the measurement campaign, the framework
needs to be revised and restructured X

Big steps towards modularity, maintainability, usability and flexibility have
been achieved by:

rearranging the code to match the GUI structure
making the system as independent as possible of the environment
reducing the dependencies from external libraries/packages although
keeping the same functionalities
improving the data handling and storage

Preparation for full characterization of the chip (at present ToPix, in a later
stage PASTA) with automatic routines that can be handle from the GUI.

01.03.2016 Alessandra Lai Slide 18


	JDRS: Jülich digital readout system
	Qt user interface
	Former version
	With new version come new features

	Git repository
	Summary

