Status of $J/\psi \pi^o \pi^o$ analysis

Vasily Mochalov for Dmitry Morozov

Input from generators

• $p\bar{p} \rightarrow h_c \rightarrow J/\psi \pi^o \pi^o$ – theoretical model and EvtGen based generator

- $p\bar{p} \rightarrow \pi^{+}\pi^{-}\pi^{0}\pi^{0}$ theoretical model and EvtGen based generator $\sigma = 10 \ \mu b$
- $p\bar{p} \rightarrow J/\psi\eta\pi^0$ theoretical model and EvtGen based generator $\sigma = 0$ (for h_c and $\psi(2S)$ channels due to mass of constituents)

Simulation

- Reason to study h_c production in the mode when all particles detected by EMC (this not observed earlier, observed decay channels less than 60%, 40% are unknown)
- September 2014
- PandaRoot rev. 25909
- $N_{ev} (p\bar{p} \rightarrow h_c \rightarrow J/\psi \pi^0 \pi^0 \rightarrow e^+ e^- 4\gamma (100\%)) = 20k$
- $\sigma_{bkg} / \sigma_{sgl} \approx 110 => N_{ev} (p\bar{p} \rightarrow \pi^{+}\pi^{-} \pi^{0}\pi^{0})_{min} = 1.1 \cdot 10^{4}$
- $N_{ev} (p\bar{p} \to \pi^+ \pi^- \pi^0 \pi^0) = 100k$
- Goals:
 - Obtain rejection factor < 10^{-4} (for the pollution by bkg <1%)
 - Reconstruction efficiency
 - Calculate N_{ev} /day
 - influence of FSC

J/ψ reconstruction

- J/ψ candidates reconstruction:
 - select electron and positron candidates,
 - combine electron-positron pairs to form J/ψ -candidates,
 - kinematic fit of J/ψ candidates with vertex constraint (cut on confidence level of the fit: $P_{J/\psi} > 0.01$),
 - mass window: 2.95 GeV/ $c^2 \le M_{e+e} \le 3.25$ GeV/ c^2 ;

J/ψ reconstruction

- J/ψ candidates reconstruction:
 - select electron and positron candidates,
 - combine electron-positron pairs to form J/ψ -candidates,
 - kinematic fit of J/ψ candidates with vertex constraint, (cut on confidence level of the fit: $P_{J/\psi} > 0.01$),
 - mass window: 2.95 GeV/ $c^2 \le M_{e+e} \le 3.25$ GeV/ c^2 ;

- *π*^o candidates reconstruction:
 - select photon candidates,
 - combine photon pairs to form π^o -candidates,
 - cut on $E_{\gamma 1} + E_{\gamma 2} > M_{\pi 0}$,
 - cut on asymmetry of photons energies: $Z_{\gamma\gamma} = |E_{\gamma1} E_{\gamma2}|/(E_{\gamma1} + E_{\gamma2}) < 0.7$,
 - mass window cut: 110 MeV/ $c^2 \le M_{vv} \le 160 \text{ MeV}/c^2$;

- π^o candidates reconstruction:
 - select photon candidates,
 - combine photon pairs to form π^{o} -candidates,
 - cut on $E_{\gamma 1} + E_{\gamma 2} > M_{\pi 0}$,
 - cut on asymmetry of photons energies: $Z_{\gamma\gamma} = |E_{\gamma1} E_{\gamma2}|/(E_{\gamma1} + E_{\gamma2}) < 0.7$,
 - mass window cut: 110 MeV/ $c^2 \le M_{\gamma\gamma} \le 160 \text{ MeV}/c^2$;

- π^o candidates reconstruction:
 - select photon candidates,
 - combine photon pairs to form π^{o} -candidates,
 - cut on $E_{\gamma 1} + E_{\gamma 2} > M_{\pi 0}$,
 - cut on asymmetry of photons energies: $Z_{\gamma\gamma} = |E_{\gamma1} E_{\gamma2}|/(E_{\gamma1} + E_{\gamma2}) < 0.7$,
 - mass window cut: 110 MeV/ $c^2 \le M_{\gamma\gamma} \le 160$ MeV/ c^2 ;

- π^o candidates reconstruction:
 - select photon candidates,
 - combine photon pairs to form π^{o} -candidates,
 - cut on $E_{\gamma 1} + E_{\gamma 2} > M_{\pi 0}$,
 - cut on asymmetry of photons energies: $Z_{\gamma\gamma} = |E_{\gamma1} E_{\gamma2}|/(E_{\gamma1} + E_{\gamma2}) < 0.7$,
 - mass window cut: 110 MeV/ $c^2 \le M_{yy} \le 160 \text{ MeV}/c^2$;

h_c reconstruction

• *h_c* candidates reconstruction:

 $-P_{4C} > 0.01$

- combine J/ψ and π^o pairs to form h_c -candidates;
- kinematic 4C-fit with initial h_c state 4-momentum constrain
- he: Prob 4C fit h, mass (all) hhc prob 4c hhcm all 1000 Entries 7881 Entries 7881 Mean 3.469 Mean 0.2025 10³ 0.07482 RMS RMS 0.2893 800 10² 600 400 200 0 0.5 1.5 2 2.5 3 3.5 4.5 0.2 0.1 0.3 0.4 4 0.5 h, mass (all) h.: Prob 4C fit hhcm all hhc prob 4c 12 Entries 306 306 Entries 4.052 Mean Mean 0.005781 10 RMS 0.4679 10² RMS 0.06872 8 6 10 2 0 0.5 1.5 2 2.5 3 3.5 0.2 0.3 0.4 0.5 0.6 0.8 0.9 0.1 0.7

Results

	with calorimeter			without calorimeter		
channel	reconstruction	N_{ev} per day	S/B	reconstruction	N_{ev} per day	S/B
	efficiency			efficiency		
$pp \rightarrow J/\psi \pi^0 \pi^0$	21.1 %	$1.5 \cdot 10^5$		17.3 %	$1.2 \cdot 10^5$	
$pp \rightarrow \pi^+ \pi^- \pi^0 \pi^0$	3/100000	2400	65	3/100000	2400	50

- PANDA is suitable to register $h_c \rightarrow J/\psi \pi^o \pi^o$ • FSC increases the reconstruction efficiency by 20% with only 0.75% of solid angle • main background $n\bar{n} \rightarrow \pi^+\pi^-$
- main background $p\bar{p} \rightarrow \pi^+\pi^ \pi^o\pi^o$ may be efficiently suppressed

Plans on h_c simulation

- Update simulation and analysis with latest PandaRoot version
- Correct numbers with respect to realistic Luminosities
- Improve analysis
- In the future investigate processes at higher energies and add more bkg. channels: $p\bar{p} \rightarrow J/\psi\eta\pi^0$...

Simulation plans

- To finish $p\bar{p} \rightarrow h_c \rightarrow J/\psi \pi^o \pi^o$ simulation
- Feasibility studies of X(3872) $\rightarrow J/\psi\rho(\omega) \rightarrow J/\psi$ J/psi + 2(3) $\pi \rightarrow \mu^+\mu^-$ (e⁺e⁻) + 2(3) π – before November
- The same for X(3940) and X(4160) the end of the year.