

Simulation Study of the Width and Lineshape of the X(3872)

PANDA CM Bochum

Charmonium Exotics Session

2. Mar. 16

K. Götzen GSI Darmstadt

Idea

- Nature of X(3872)
 - Need lineshape and width to understand structure
- Approach at PANDA
 - Fine scan around nominal mass
 - \rightarrow energy dependent cross section
- Analysis goals
 - Sensitivity of Γ measurement (conventional BW)
 - Sensitivity for virtual/bound state (molecular picture)
- Analysis strategy
 - Analysis of X(3872) \rightarrow J/ $\psi(\ell^+\ell^-) \rho^0(\pi^+\pi^-)$ channel only
 - Full sim/reco \rightarrow signal + background efficiencies ϵ_{S} and ϵ_{B}
 - Toy MC scan simulation with assumption for cross sections, integrated luminosities, BRs

Note ready for Review

Simulation Study of the Width and Line Shape of the X(3872)

Klaus Götzen^{*,1}, Ralf Kliemt^{1,3}, Frank Nerling^{1,2}, Klaus Peters^{1,2}

¹GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt

²Goethe Universität Frankfurt

³Helmholtzinstitut Mainz

*primary author

February 22, 2016

20	~						
21	1	Introduction	3				
22	2	Goal of Measurement	3				
23		2.1 Measurement of the Breit-Wigner-like Width Γ_X	3				
24		2.2 Extraction of Line Shape and Separation between Molecule and Virtual State	4				
25	3	Energy Scans with HESR	7				
26	4	Simulation and Reconstruction of the $X(3872)$ within PandaRoot	10				
27		4.1 Software Environment	10				
28		4.2 Data	10				
29		4.3 Reconstruction and Pre-Selection	13				
30		4.4 Final Selection	16				
31	5	Simulation of the Energy Scan	22				
32		5.1 Parameter Space	22				
33		5.2 Simulation of Energy Dependent Yields	25				
34		5.3 Results	30				
35	6	Summary	31				
36	Α	A Parameter Variations 33					

²⁰ Contents

Molecular Picture (Hanhart et al)

- Lineshapes from [Kalashnikova et al, Phys. Atom. Nucl. 73 (2010) 1592]
- Here only interested in X(3872) \rightarrow J/ $\psi \pi^+\pi^-$

 $\sigma(E) = C \cdot \frac{\Gamma_{\pi^+\pi^- J/\psi}(E)}{|D(E)|^2}$

(assuming lineshape as in B decays)

•
$$D(E) = \begin{cases} E - E_f - \frac{g_1 \kappa_1}{2} - \frac{g_2 \kappa_2}{2} + i \frac{\Gamma(E)}{2}, & E < 0, \\ E - E_f - \frac{g_2 \kappa_2}{2} + i \left(\frac{g_1 k_1}{2} + \frac{\Gamma(E)}{2}\right), & 0 < E < \delta \\ E - E_f + i \left(\frac{g_1 k_1}{2} + \frac{g_2 k_2}{2} + \frac{\Gamma(E)}{2}\right), & E > \delta, \end{cases}$$

•
$$\Gamma(E) = \Gamma_{\pi^+\pi^- J/\psi}(E) + \Gamma_{\pi^+\pi^-\pi^0 J/\psi}(E) + \Gamma_0$$

 $\Gamma_{\pi^+\pi^- J/\psi}(E) = f_\rho \int_{2m_\pi}^{M-m_{J/\psi}} \frac{dm}{2\pi} \frac{q(m)\Gamma_\rho}{(m-m_\rho)^2 + \Gamma_\rho^2/4}$
 $\Gamma_{\pi^+\pi^-\pi^0 J/\psi}(E) = f_\omega \int_{3m_\pi}^{M-m_{J/\psi}} \frac{dm}{2\pi} \frac{q(m)\Gamma_\omega}{(m-m_\omega)^2 + \Gamma_\omega^2/4}$

Parameter E_f determines state to be bound or virtual

02.03.2016

Lineshapes for different E_f

02.03.2016

K. Götzen - X(3872) scan

Reconstruction Part

Parameters

	Parameter	Value
	$BR(J/\psi \rightarrow e^+ e^-)$	5.97 %
Branching	$BR(J/\psi \rightarrow \mu^+ \mu^-)$	5.96 %
Fractions	$BR(\rho^0 \rightarrow \pi^+ \pi^-)$	100%
	$BR(X \rightarrow J/\psi \rho^0)$	5 % (UL: 6.6%)
	$\sigma_{peak}(\bar{p}p \rightarrow X)$	100 nb (UL: 169nb)
Cross sections	$\sigma(\bar{p}p \rightarrow J/\psi \pi^+\pi^- \text{ non-res})$	1.2 nb* (theory)
	$\sigma(\bar{p}p \rightarrow \text{inelastic}) @ 3.872 \text{ GeV}$	46 mb
Luminositios	L _{HL} (3.872 GeV)	13683 (nb·d) ⁻¹ **
Lummosities	L _{HESRr} (3.872 GeV)	1170 (nb·d) ⁻¹ **
	ΔE_{abs} (energy prec. w/ calibration)	168 keV (dp/p = 10^{-4})
Resolutions	ΔE_{rel} (relative energy positioning)	1.7 keV (dp/p = 10^{-6})
Resolutions	ΔE _{mom} (HL)	168 keV (dp/p = 10^{-4})
	ΔE _{mom} (HESRr)	84 keV (dp/p = 5-10 ⁻⁵)
02.03.2016	K. Götzen - X(3872) scan	* [PRD 77 (2008) 097501] ** [IN-IDE-2015-002 (2015)] 7

Signal Cross Section - Remarks

• LHCb: $B(X \to \bar{p}p) < 0.002 \cdot B(X \to J/\psi \pi \pi)$ (CL95)

[Eur. Phys. J. C73 (2013) 2462] [arXiv:0910.3138v2 (2009)]

- Review paper + PDG: 2.6% < B(X→J/ψ π π) < 6.6% (CL90)
- Crossing Symmetry (or detailed balance) gives at peak

$$\sigma_{\text{peak},\bar{p}p\to X} = \frac{12\pi}{\frac{M_X^2 - 4m^2}{k}} \cdot B(X \to \bar{p}p) < 2.56\mu b \cdot B(X \to J/\psi\pi^+\pi^-)$$

$$k \cdot (197.3 \text{ MeV} \cdot \text{fm})^2 \cdot 0.01 \text{ b/fm}^2 \cdot 0.002$$

 $\Rightarrow \sigma_{\text{peak, p}\bar{p} \rightarrow X} < 67 \text{ nb} \dots 128 \text{ nb} \dots 169 \text{ nb} @ CL95 \cdot CL90$ product of LL and UL not an UL!

- Use σ_{peak,pp→X} = 100 nb instead previous 50 nb
 (BESIII uses B(X→J/ψ2π) = 5% in some paper ⇒ σ_{pp→X} < 128nb)
- NB: $\sigma_{p\bar{p} \rightarrow X} \cdot B(X \rightarrow J/\psi 2\pi) = 100 \text{ nb} \cdot 5\% = 50 \text{ nb} \cdot 10\% = 5 \text{ nb}$ (same!)

new

M. Galuska

Software and Data

• Software

- PandaRoot: Revision 28670
- FairSoft: mar15p2
- FairRoot: v15.03
- Data @ E_{cm} = 3.872 GeV

Channel	#Events
$\bar{p}p \rightarrow J/\psi \ \rho^0 \rightarrow e^+e^- \ \pi^+\pi^-$	98k
$\bar{p}p \rightarrow J/\psi \ \rho^0 \rightarrow \mu^+\mu^- \ \pi^+\pi^-$	100k
$\bar{p}p \rightarrow J/\psi (\rightarrow e^+e^-) \pi^+\pi^- (NR)$	100k
$\bar{p}p \rightarrow J/\psi (\rightarrow \mu^+\mu^-) \pi^+\pi^-(NR)$	99k
DPM (J/ $\psi \rightarrow e^+ e^-$ prefilter)	≈10M = 9.58G generated
DPM (J/ $\psi \rightarrow \mu^+ \mu^-$ prefilter)	≈10M = 8.87G generated

Background Prefilter QA

- Filtering criteria
 - Require 4 charged tracks
 - Require one 2-track combination : $m_{ee/\mu\mu} > 2.8 \text{ GeV/c}^2$
 - Suppression factor e⁺e[−] : ≈1/1000
 - Suppression factor $\mu^+\mu^-$: $\approx 1/900$
- Check filter bias (µµ only)
 - Cross check with criterion $m_{\mu\mu} > 2.5 \text{ GeV/c}^2 (10M \rightarrow 2.6G)$
 - Slight difference at lower mass edge
 - Total integral difference: 1.9%
 - ⇒ Negligible effect!

Signal Reconstruction & Pre-Selection

- Preselection e⁺e⁻:
 - Particle Identification : ElectronTight, PionAll (PidAlgoEmcBayes;PidAlgoDrc;PidAlgoDisc;PidAlgoStt;PidAlgoMdtHardCuts)
 - J/ ψ \rightarrow e⁺e⁻ mass window: 2.0 < m(e⁺e⁻) < 3.4 GeV/c²
 - $\rho^0 \rightarrow \pi^+\pi^-$ mass window: 0.27 < m($\pi^+\pi^-$) < 1.0 GeV/c²
 - $\ \bar{p}p \rightarrow J/\psi \ \rho^0 \ 4C \ fit \qquad : \chi^2 < 200$
- Preselection $\mu^+\mu^-$:
 - Particle Identification : MuonTight, PionAll (PidAlgoEmcBayes;PidAlgoDrc;PidAlgoDisc;PidAlgoStt;PidAlgoMdtHardCuts)
 - J/ $\psi \rightarrow \mu^+\mu^-$ mass window: 2.5 < m($\mu^+\mu^-$) < 3.4 GeV/c²
 - $\rho^0 \rightarrow \pi^+\pi^-$ mass window: 0.27 < m($\pi^+\pi^-$) < 1.0 GeV/c²
 - $\ \bar{p}p \rightarrow J/\psi \ \rho^0 \ 4C \ fit \qquad : \chi^2 < 100$

Data distributions

Pre-selection Results

R		$J/\psi \to e^+e^-$			$J/\psi ightarrow \mu^+\mu^-$		
Efficiency	ε _s [%]	ε _{DPM} [10 ⁻¹⁰]	ε _{NR} [%]	ε _s [%]	ε _{DPM} [10 ⁻¹⁰]	ε _{NR} [%]	S:N _{comb}
Pre-select.	19.1	1150	17.3	24.2	29300	21.8	1 : 1087
Final select.	12.2	1.0	2.8	15.2	4.5	3.0	2.7 : 1
$Final(\pm 3\sigma)$	10.1	0.13	2.3	13.1	0.56	2.6	10.4 : 1

Final Selection Criteria

- Final selection e⁺e⁻
 - Electron $PID(e^{\pm}) > 0.95$
 - $m_{fit}(e^+e^-) + m_{fit}(\pi^+\pi^-) > 3.77 \text{ GeV/c}^2$
 - $3.867 \text{ GeV/c}^2 < m_{fit} (e^+e^- \pi^+\pi^-) < 3.874 \text{ GeV/c}^2$
 - $p_{cm}(e^+e^-) < 0.4 \text{ GeV/c}$
 - $\neq (p_{e+}, p_{e-}) < 2.1 \text{ rad}$
- Final selection $\mu^+\mu^-$
 - Muon PID(μ^{\pm}) > 0.99
 - $m_{fit} (\mu^+ \mu^-) + m_{fit} (\pi^+ \pi^-) > 3.78 \text{ GeV/c}^2$
 - $\not = (p_{\mu+}, p_{\mu-}) < 1.4 \text{ rad}$
 - Sphericity S<0.11

Final Selection Results

	$J/\psi \rightarrow e^{\mu}e^{\mu}$			$J/\psi \rightarrow \mu^{*}\mu$			
Efficiency	ε _s [%]	ε _{DPM} [10 ⁻¹⁰]	ε _{NR} [%]	ε _s [%]	ε _{DPM} [10 ⁻¹⁰]	ε _{NR} [%]	S:N _{comb}
Pre-select.	19.1	1150	17.3	24.2	29300	21.8	1:1087
Final select.	12.2	1.0	2.8	15.2	4.5	3.0	2.7 : 1
Final($\pm 3\sigma$)	10.1	0.13	2.3	13.1	0.56	2.6	10.4 : 1

Energy Scan Part

Parameters **R**

• All relevant parameters used for scan

Symbol	Value	Description
$B(X \to J/\psi\rho^0) = B_X \ [\%]$	5	branching fraction of $X(3872)$ decay
$B(J/\psi \to e^+e^-) = B_{ee} \ [\%]$	5.971	branching fraction of the J/ψ decay
$B(J/\psi \to \mu^+ \mu^-) = B_{\mu\mu} ~[\%]$	5.961	branching fraction of the J/ψ decay
$B(\rho^0 \to \pi^+\pi^-) ~[\%]$	100	branching fraction of the ρ^0 decay
$\sigma_{S,\max}$ [nb]	100	peak production cross section of $X(3872)$
$\sigma_{B,\text{gen}} \text{ [mb]}$	46	cross section of generic background
$\sigma_{B,\mathrm{NR}} [\mathrm{nb}]$	1.2	cross section of non-resonant $J/\psi \pi^+\pi^-$ prod.
$\overline{L}_{\rm HL} \ [1/({\rm nb}\cdot{\rm d})]$	13683	HL average luminosity
$\overline{L}_{\mathrm{HESRr}} \left[1/(\mathrm{nb} \cdot \mathrm{d}) \right]$	1170	HESRr average luminosity
$\Delta E_{\rm HL} \; [\rm keV]$	167.8	center-of-mass energy spread in HL mode
$\Delta E_{\rm HR}$ [keV]	83.9	center-of-mass energy spread in HESRr mode
$t_{\rm scan}$ [d]	80	total scan time
$N_{ m scan}$	40	number of scan points
$\Gamma_X [\text{keV}]$	[50, 70, 100, 130, 180, 250, 500]	parameter range Breit-Wigner study
$E_f [{ m MeV}]$	-[10.0, 9.0, 8.8, 8.3, 8.0, 7.5, 7.0]	parameter range molecule line shape study

Possible Approaches

Two obvious approaches possible to extract lineshape:

- 1. Cut on J/ψ and count
 - simple + robust
 - both backgrounds still in scanned lineshape
- 2. Fit signal in J/ψ mass
 - removes DPM bkg
 - NR bkg still present

Use 2. method here!

Uncertainty Assumptions for Scan

- Beam related energy resolution:
- Absolute positioning (calibration): $\Delta E_{cal} = 167 \text{ keV}$ (shift)
- Relative positioning resolution:

 $\Delta E_{mom} = 84 (HESRr) / 168(HL) keV$ $\Delta E_{cal} = 167 keV (shift)$ $\Delta E_{rel} = 1.7 keV (negligible!)$

Procedure for Individual Scan

Scan procedure

- Set parameter P (Γ or E_f) in signal function
- Define scan region, number of points, L_{int} / point
- Scale unfolded function $\sigma_{S}(E)$ to $\sigma_{S,max} = 100$ nb and adapt convoluted function $\sigma^{*}_{S}(E) \rightarrow \sigma^{*}_{S,max} \leq 100$ nb
- For each energy scan point (E_{cm})
 - 1. Modify energy $E_{cm} \rightarrow E_{cm}'$ according to ΔE_{cal}
 - 2. Compute expected S₀ / B_{DPM,0} / B_{NR,0} based on $\sigma^*_{S}(E_{cm}')$ / σ_{DPM} / σ_{NR}
 - 3. Generate Poisson random num. S / B_{DPM} / B_{NR} from expected ones
 - 4. Generate J/ψ data with S+B_{NR} signal and B_{DPM} background events
 - 5. Do unbinned ML fit to extract $N_{J/\psi} \Delta N_{lo} \rightarrow Scan graph at E_{cm}$
- Fit graph with signal + background function \rightarrow parameter P
- Repeat N times to determine root-mean-square & bias of P

Lineshape Examples

K. Götzen - X(3872) scan

Signal/Background PDF for ML fits

- Softened selection for µ⁺µ⁻
 - Muon PID(μ^{\pm}) > 0.8
 - $m_{fit} (\mu^+\mu^-) + m_{fit} (\pi^+\pi^-) > 3.65 \text{ GeV/c}^2$
- Signal: Double-Gauss
- Background: Parabola

Signal PDF

Background PDF

Scan Procedure Example

Prob

0.0055

Sensitivities Breit-Wigner Γ (40 x 2d)

- Extract standard deviation and bias from toy MC fits
- Show relative error $rms_{fit}/\overline{\Gamma}_{fit}$ and bias $(\overline{\Gamma}_{fit} \Gamma_0)/\Gamma_0$ in [%]

Sensitivities Lineshapes (40 x 2d)

- Extract standard deviation and bias from toy MC fits
- How well can virtual and bound state be distinguished?

Mis-Identification Probability

• Take uncertainty as $\sigma_{Gaussian} \rightarrow$ Integrate in mismatch region

Summary

- Investigation of X(3872)-Scan at PANDA
- Main scenario: 40 x 2d data taking
- Determined sensitivity for BW width measurement
 - Sensitivity $\Gamma/\Delta\Gamma > 5$ at $\Gamma \gtrsim 90 \dots 120$ keV
 - Bias $(\Gamma \Gamma_0)/\Gamma_0$ no problem over full range
 - HL mode superior over investigated range
- Determined sensitivity for molecular lineshape measurement
 - Possible to distinguish bound/virtual state
 - $P_{HL} > 95\%$ (all investigated settings)
 - $\mathsf{P}_{\mathsf{HESRr}}$ > 95% for $|\mathsf{E}_{\mathsf{f}}$ $\mathsf{E}_{\mathsf{f},\mathsf{th}}|$ \gtrsim 750 keV
 - HL mode superior over investigated range
- Release note ready for review

BACKUP

Lineshape Examples

Background Prefilter

- Reasonable S/N sensitivity: need huge amount of BG
- Example calculation:
 - Signal: $\sigma_{\rm S}$ = 100 nb, ${\sf BR}_{J/\psi}$ = 0.06, ${\sf BR}_{\rm X}$ = 0.05, $\epsilon_{\rm S}$ = 10%
 - Background: $\sigma_B = 46 \text{ mb}$ (inelastic @ $E_{cm} = 3.872 \text{ GeV}$)

$$\frac{S}{N} = \frac{\sigma_S \cdot \varepsilon_S}{\sigma_B \cdot \varepsilon_B} \cdot BR_{J/\psi} \cdot BR_X \stackrel{!}{\ge} 1$$
$$\Rightarrow \varepsilon_B < \frac{\sigma_S \cdot \varepsilon_S}{\sigma_B} \cdot BR_{J/\psi} \cdot BR_X = 6.5 \cdot 10^{-10}$$
$$\Rightarrow N_B > 1/\epsilon_B = 1.5 \cdot 10^9$$

- Neither feasible nor efficient to simulate completely
- Use FairFilteredPrimaryGenerator to filter already at generator level

QA Plots for $J/\psi \rightarrow e^+e^-$ Channel

QA Plots for $J/\psi \rightarrow \mu^+\mu^-$ Channel

preselection - after cut

signal - hadronic bkg - J/ψ NR bkg.

Comparison to Previous Analysis

