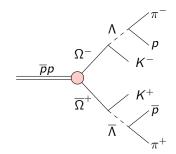
Extracting longitudinal position and momentum with the skewed straws

Walter Ikegami Andersson


 $\begin{array}{c} \text{Uppsala University} \\ \text{on behalf of the \overline{P}ANDA collaboration} \end{array}$

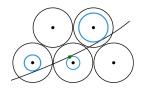
PANDA collaboration meeting March 1, 2016
Bochum, Germany

Detecting hyperons with $\overline{P}ANDA$

A track finder to detect hyperons:

- ullet Ground state hyperons decay weakly ightarrow displaced vertices
- Many excited hyperons decay into Λ

$\overline{p}p o \overline{\Omega}^+ \Omega^-$ characteristics


- 6 charged tracks from 4 displaced vertices
- Tracks from displaced vertex can miss MVD

The PANDA Straw Tube Tracker

STI specifications			
Total straws	4636		
Axial layers	15-19		
Stereo layers	8		
Stereo angle	\pm 2.9 deg		

Isochrone radius

Radial distance from track to wire

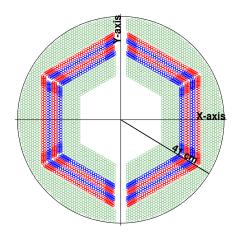
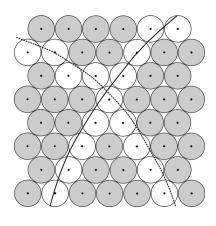
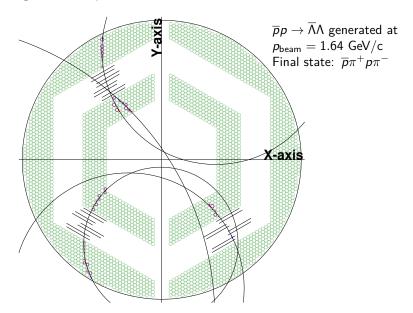


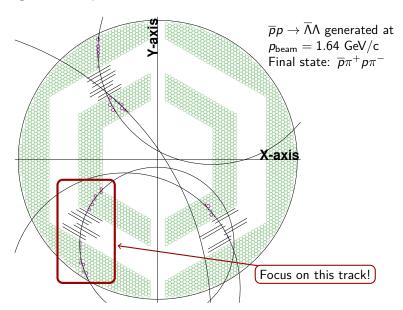
Figure: Cross sectional view of STT Green - parallel straw Red, blue - skewed straw


SttCellTrackFinder

Track reconstruction algorithm using only STT. (J. Schumann, Forschungszentrum Jülich)


- Cluster hits in parallel straws into tracklets (neighboring relations)
- Refined circle fit using isochrones
- Assign skewed straw hits to track

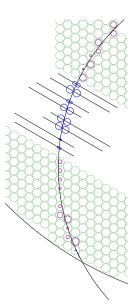
Output: circle for each track in *xy*-plane


Must include skewed straws to reconstruct p_z

Longitudinal position from skewed straws

Longitudinal position from skewed straws

Longitudinal position from skewed straws


The method:

- Extract isochrone radius in skewed straw
- Center of isochrone gives z-position
- Generate all possible isochrone positions
- Calculate (z, ϕ)

Ambiguity: Each straw gives two possible (z, ϕ)

Solve ambiguity

Use Hough transform or combinatoric method to reject fake positions

Find geometric shapes in images.

- Helix trajectory \rightarrow straight line in $z-\phi$ space
- Line parameters in xy-plane, slope k and intercept m

-
$$y(x) = kx + m$$

Problem: The intercept parameter *m* unbound.

Hesse normal form

$$r = x \cos \theta + y \sin \theta$$
$$y = \left(-\frac{\cos \theta}{\sin \theta}\right) x + \left(\frac{r}{\sin \theta}\right)$$

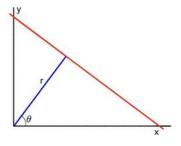
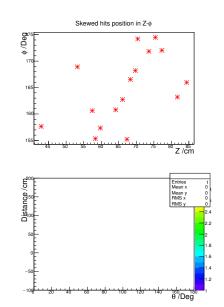
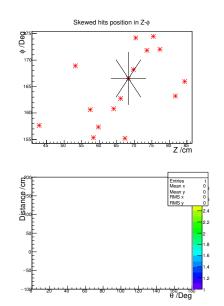
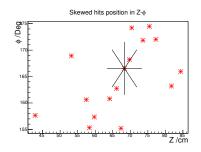
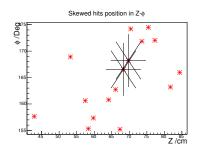




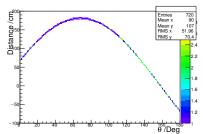
Figure: Blue line perpendicular to red line and crosses the origin

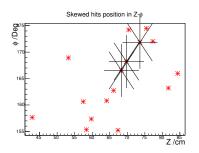

The method:

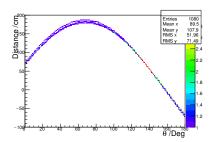


- **1** Isochrone centers in $z \phi$ space
- @ Generate set of all lines

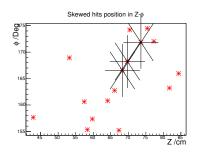


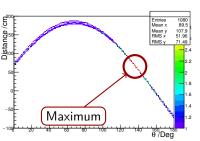

- **1** Isochrone centers in $z \phi$ space
- @ Generate set of all lines
- $\begin{array}{c} \textbf{3} \ \, \mathsf{Parameters} \to \mathsf{accumulator} \\ \mathsf{space} \end{array}$




- **1** Isochrone centers in $z \phi$ space
- @ Generate set of all lines
- Parameters → accumulator space
- Repeat for all points

- **1** Isochrone centers in $z \phi$ space
- @ Generate set of all lines
- $\textbf{ 9} \ \, \mathsf{Parameters} \to \mathsf{accumulator} \\ \mathsf{space} \\$
- Repeat for all points





The method:

- **1** Isochrone centers in $z \phi$ space
- @ Generate set of all lines
- $\textbf{3} \ \, \mathsf{Parameters} \to \mathsf{accumulator} \\ \mathsf{space} \\$
- Repeat for all points
- $oldsymbol{0}$ Voting procedure o true line

True line found in maximum!

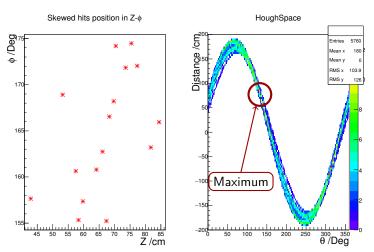
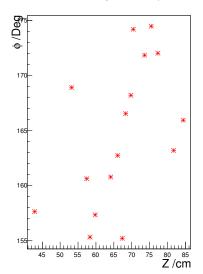


Figure: 360 lines generated for each data point in steps of 1 $^{\circ}$ in θ

Method 1: Extracting helix angle

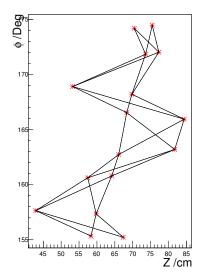
The method:

- 1 Calculate point of closest approach (POCA) from hits to true line
- Accept hit with smallest POCA
- **3** Straight line fit with selected (z, ϕ) coordinates


Finish

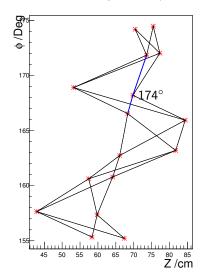
The slope of the fitted line yields the helix angle. z_0 and p_z can now be extracted!

- z-position assigned to all skewed hits
- Extrapolate helix to first and last parallel hit ightarrow new FairTrackParP

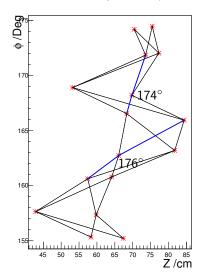

The method:

Skewed hits position in Z-φ

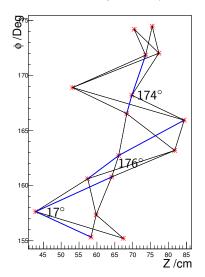
The method:


• Calculate all lines between (z, ϕ) points in neighboring skewed straws

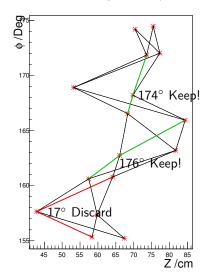
The method:


- Calculate all lines between (z, ϕ) points in neighboring skewed straws
- Calculate angle between all possible neighboring lines

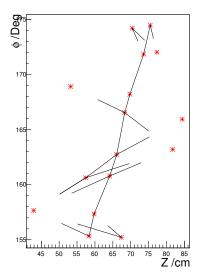
Skewed hits position in Z-ф


The method:

- Calculate all lines between (z, ϕ) points in neighboring skewed straws
- 2 Calculate angle between all possible neighboring lines

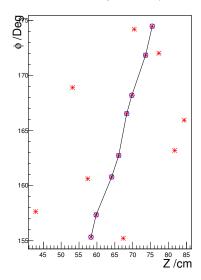

The method:

- Calculate all lines between (z, ϕ) points in neighboring skewed straws
- Calculate angle between all possible neighboring lines


The method:

- Calculate all lines between (z, ϕ) points in neighboring skewed straws
- Calculate angle between all possible neighboring lines
- **3** Ignore paths where $\theta < 160^{\circ}$ \rightarrow reduces number of combinations

The method:


- Calculate all lines between (z, ϕ) points in neighboring skewed straws
- Calculate angle between all possible neighboring lines
- **3** Ignore paths where $\theta < 160^{\circ}$ \rightarrow reduces number of combinations

The method:

- Calculate all lines between (z, ϕ) points in neighboring skewed straws
- Calculate angle between all possible neighboring lines
- **③** Ignore paths where $\theta < 160^{\circ}$ → reduces number of combinations
- Choose path with $min(\sum \theta_i 180^\circ)$

Hits in final path chosen as true hits

Code structure

- PndSttSkewStrawPzFinderTask.cxx
 - PndTrack Standard PANDA track object
 - PndTrackCand PndSttHits belonging to track
 - PndRiemannTrack Riemann circle parameters to track
- PndSttSkewStrawPzFinder.cxx
 - MoveSkewedHitstoCircle
 - Calculates all possible (z,ϕ) in skewed straw
 - HoughTruelsoFinder
 - Fills accumulator space, find maximum, rejects fake hits with POCA
 - LineCombilsoFinder
 - Generates lines, calculates angles, find best path
 - PzLineFitExtract
 - Simple line fit to true (z, ϕ) hits and extracts helix angle
- PndSttSkewStrawPzFinderAnaTask.cxx
 - Task for analysing and drawing output

Summary and outlook

- Hyperons pose a challenge due to displaced vertices
- General class developed to extract longitudinal information from skewed straws
 - Input: Circle parameter of helix, list of hits
 - Output: Helix angle, modified FairTrackParP
- SttCellTrackFinder now reconstructs complete track helices
- Benchmarking SttCellTrackFinder
 - How does PndRecoKalmanTask deal with SttHits?
 - Standard ways of Quality assurance?

Summary and outlook

- Hyperons pose a challenge due to displaced vertices
- General class developed to extract longitudinal information from skewed straws
 - Input: Circle parameter of helix, list of hits
 - Output: Helix angle, modified FairTrackParP
- SttCellTrackFinder now reconstructs complete track helices
- Benchmarking SttCellTrackFinder
 - How does PndRecoKalmanTask deal with SttHits?
 - Standard ways of Quality assurance?

Thank you for your attention!

Backup

Hyperon channels in PANDA

Why antihyperon-hyperon production?

- Hyperons produced at scales where QCD is poorly understood
- CP violation needed to describe matter in the universe
- Never-before measured hyperon states
- Measure properties e.g. spin of hyperons

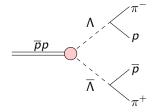


Figure: $\Lambda\bar{\Lambda}$ production channel, scarce data above $\sqrt{s}=4$ GeV

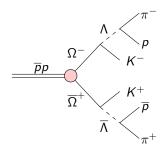


Figure: $\overline{\Omega}^+\Omega^-$ production channel, never measured

Hyperon production $\overline{p}p \to \overline{Y}Y$

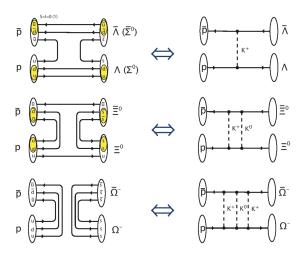


Figure: $\overline{p}p \to \overline{Y}Y$ in quark-gluon picture (left) and in Hadron picture (right).

Hyperons: Spin observables in $\overline{p}p \to \overline{Y}Y$

Spin observables can be used to test theoretical model. Angular distribution related to

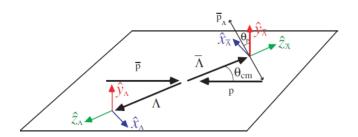
$$I \propto \sum_{\mu,\nu=0}^{3} \sum_{k,l=0}^{3} \overline{\alpha} \alpha \chi_{kl\mu\nu} P_{k}^{B} P_{l}^{T} \overline{k}_{\mu} k_{\nu}$$

With unpolarised beam and unpolarised target, differential cross section χ_{0000} , polarisation $\chi_{00\mu0}=P_{\overline{i}}$, $\chi_{000\nu}=P_i$ and the spin correlations $\chi_{00\mu\nu}=C_{ij}$ are accessible.

Polarisation

- 3 polarisation parameters for spin-¹/₂ hyperons: P_x, P_y, P_z
- $P_x = P_z = 0$ due to strong production
- $P_y = P_{\overline{y}}$ due to rotational invariance

Spin correlation


- 9 spin correlation parameters for spin- $\frac{1}{2}$ hyperons: $C_{i,j}$
- $C_{xy} = C_{yx} = C_{yz} = C_{zy} = 0$ due to strong production
- $C_{xz} = C_{zx}$ due to rotational invariance

Hyperons: Spin observables in $\overline{p}p \to \overline{Y}Y$

Polarised Particle	None	Beam	Target	Both
None	<i>I</i> ₀₀₀₀	A_{i000}	A_{0j00}	A_{ij00}
Scattered	$P_{00\mu0}$	$D_{i0\mu0}$	$K_{0j\mu0}$	$M_{ij\mu0}$
Recoil	$P_{000\nu}$	$K_{i00 u}$	$D_{0j0\nu}$	$N_{ij0 u}$
Both	$C_{00\mu\nu}$	$C_{i0\mu\nu}$	$C_{0j\mu\nu}$	$C_{C_{ij\mu\nu}}$

 \bullet In $\overline{p}p \to \overline{Y}Y$ there are 256 spin variables in total

Hyperons: Spin observables in $\overline{p}p \to \overline{Y}Y$

Polarisation

Proton angular distribution:

$$I(\theta_p) = \frac{1}{4\pi} (1 + \alpha P_Y \cos \theta_p)$$

 $\overline{\alpha}, \alpha$ - decay asymmetry parameter

Spin correlation

Nucleon angular distribution:

$$I(heta_i, heta_j) = rac{1}{16\pi^2}(1+$$

$$\overline{\alpha}\alpha\sum_{i,j} C_{ij}\cos\theta_i\cos\theta_j$$

13 /

Accessible hyperons at $\overline{P}ANDA$