Dimuon Measurement in CBM Experiment at FAIR

Anand Kumar Dubey VECC, Kolkata

Outline

- Dilepton measurements
- CBM experiment at FAIR
- Schematic of dimuon measurements in different expt.
- Muon Chamber (MUCH) system of CBM
 - -- Simulation results
 - -- Detailed R&D
- Summary

The Compressed Baryonic Matter Experiment (CBM)@FAIR

- Fixed target heavy ion expt.
- Energy range 2-45 GeV/u
- Expected to begin 2021

CBM physics program:

- Equation-of-state at high ρ_B
- Deconfinement phase transition
- QCD critical endpoint
- Chiral symmetry restoration

Diagnostic probes of the high-density phase:

- open charm, charmonia
- low-mass vector mesons
- multistrange hyperons
- flow, fluctuations, correlations

Exploring the QCD Phase Diagram

Rare Probes

- → high interaction rates
- → selective triggers

The Dileptons

- Dilepton pairs emitted in energetic heavy-ion collisions provide valuable information on the evolution and on the properties of the hot and dense fireball.
- Comparison of charmonium yields measured in proton-nucleus and nucleusnucleus collisions has led to the observation of an anomalous dissociation of charmonium in central collisions of heavy nuclei which was explained by color screening in the quark-gluon phase.
- Till today, this observation still has remained one of the most convincing experimental facts hinting towards the existence of partonic degrees of freedom in the fireball at top SPS energies.
- The dilepton measurements at the CERN-SPS have been performed mainly at 158 A GeV, except for one spectrum taken in Pb+ Au at 40 A GeV by the CERES collaboration where even an increased excess yield has been observed

Anomalous suppression

Using the previously defined reference:

Central Pb-Pb:

→ still anomalously suppressed

In-In:

almost no anomalous suppression

- B. Alessandro et al., EPJC39 (2005) 335
- R. Arnaldi et al., Nucl. Phys. A830 (2009) 345

- A systematic beam energy scan in order to search for the onset of in-medium mass modifications of vector mesons or for partonic contributions to the dilepton yield has not been performed yet.
- With the dilepton measurements in heavy-ion collisions at FAIR energies the CBM collaboration will open a new era of dilepton experiments in the energy range between 2 and 40 A GeV where the highest net- baryon densities can be created in the laboratory,
- no dileptons have been measured in heavy ion collisions at these energies.
- The CBM collaboration will systematically measure both dielectrons and dimuons in p+p, p+A and A+A collisions as function of beam energy and size of the collision system.
- The dielectron and dimuon high-precision data will complement each other, and will provide a complete picture on dilepton radiation off dense baryonic matter. Also gamma conversion contamination is largely suppressed in case of dimuons.

The CBM experiment

Muon Chamber (MUCH) system

CBM Experiment @ FAIR

Aim: to detect dimuon signals from low mass vector mesons and $J/\psi^{(13.5 \lambda_l)}$

Novel subsystem of segmented absorbers

-- design goal being to simultaneously identify low and high momentum muons over full phase_{SIS300} : upto 45 GeV/u →5 det.stations + space

SIS100 : 2-4 GeV/u \rightarrow 4 chambers + 4

absorbers

6 absorbers

What is the typical configuration for dimuon detection in particle physics?

Muons: 1.2 < |y| < 2.2

~10λ hadron absorbers

-Tracked with wire chambers

Measuring momentum

Measuring momentum → magnetic field

– Charged particle tracks bend : $\Delta \phi \alpha P$

 $\Delta \varphi \& \theta \Rightarrow$ particle momentum

Semi-leptonic decays of HF hadrons:

ALICE Detector

(Muon Arm)

Heavy Flavour meet, SINP, Kolkata, 03-05 Feb 2016

ALICE MUON ARM

The ALICE forward muon spectrometer will study the complete spectrum of heavy quarkonia (J/ Ψ , Ψ' , Υ , Υ' , Υ'') via their decay in the $\mu+\mu-$ channel.

The optimized design provides

- --- a good shielding capability and
- --- a limited multiple scattering (...mass resolution).
- → Using low-Z material in the absorber layers close to the vertex, and a high-Z shielding materials at the other end. => Pb + Boronated polyethylene & Pb + tungsten

Muon detection system: MUCH

- ID after hadron absorber with intermediate tracking layers
- major combinatorical background from π ,K decays into $\mu\nu$, punch through of hadrons and track mismatches
- \rightarrow use excellent tracking to reject π ,K decays in the STS

60 C + 20 Fe + 20 Fe + 30 Fe + 35 Fe + 100 Fe (cm) 30 cm gap between 2 absorbers

Optimizing Absorber thicknesses

Inputs for Detector Optimization

URQMD background : central Au+Au @8, 10 and 25 AGeV p+Au @ 30 GeV

Pluto: signal distributions LMVM @ 8 and 25 AGeV J/ψ @10 AGeV and 30 GeV

Total number of particles as a function of the traversed length in iron. The particle momenta have been taken from the simulation of central Au+Au collisions at 25 A GeV, their numbers have been normalized.

Track reconstruction efficiency for primary muon tracks from J/psi as a function of momentum for two tracking algorithms: nearest neighbor (red) and branching (blue). Left plot shows MUCH tracking efficiency, right plot shows STS-MUCH tracking efficiency. Horizontal lines represent numbers integrated over momentum.

3 layout options for SIS100 and SIS300

Lengths:

6.4m (SIS100)

7.3m (SIS300)

Occupancy (25 AGeV central collisions)

Geant3 + segmentation + GEM profile implemented

Hit density on 1st station (Carbon as first absorber)

Neutron-equivalent dose

TID: Total lonizing Dose at the outer edge of the detector is around 10krad

eMuch1Dep_projX

eMuch1Dep_projY

Ref: http://cbm-wiki.gsi.de/cgi-bin/viewauth/Radiationstudies/WebHome?CGISESSID=2bce338388a71f099de8d3ca43e0f2b7

Acceptance plots for J/psi mesons simulated for Au + Au collisions at 10 A GeV

for the PLUTO input (left) and after reconstruction (right).

Invariant mass spectra – muons

- Shown: central (b=0fm) Au+Au collisions at 25 AGeV
- Mass resolution: 12 MeV (ω) and 29 MeV (J/ ψ) only due to momentum determination in STS
- LMVM spectra for SIS100 show similar quality
- J/ψ in central pAu at 30GeV with superb S/B ratio

Challenges in Muon detection

Main issues:

- High collision rates ~ 10 MHz
- The first plane(s) have a high density of tracks
 High granularity ~ average hit rate is about 0.4 hit/cm²
- Should be radiation resistant –
 high neutron dose → ~10¹³ n.eq./sq.cm/year
- Large area detector with modular arrangement
- Data to be readout in a self triggered mode
 - -- a must for all CBM detectors.
 - -- and event reconstructed offline by grouping the timestamps of the detector hits.

Particle Density at Different MUCH stations

Different detector technologies for different stations

- -- For the first two stations, which demand a high rate capability, Gas Electron Multiplier technology (GEM) would be used.
- -- Straw tube and TRD for the other layers.

10⁷

Straw Tube R&D by Dubna Group

CERN, with the same gas mixture of Ar/CO2 (80/20) and the gas gain 7 104 in both cases.

The efficiency was about 98% and 99% for the 4 mm and 9.53 mm straws, respectively.

Gas mixture	Percentage	t_{max} , ns	dE/E, %
$\rm Ar/CO_2$	70/30	68.4	180.8
$Ar/CO_2/CF_4$	63/32/5	66.7	22.5
$ m Ar/CO_2/CF_4$	63/27/10	60	26.4
$ m Ar/CO_2/CF_4$	63/17/20	45	33.5
$\mathrm{Ar/CO_{2}O_{2}}$	(70/30)/0.8	64.1	18.8
$ m Ar/CO_2/O_2$	(70/30)/1	63.2	19
$ m Ar/CO_2/O_2$	(70/30)/1.5	59.5	28
$ m Ar/CO_2/O_2$	(70/30)/3	56.2	_

Spatial resolution as a function of the scaled distance to the anode for the straws with 4 mm (circles) and 9.53 mm (diamonds) inner diameter. gas mixture Ar/CO2 (80/20), and the gas gain was about 70K in both cases.

Triple GEM module for the first Two stations

Gas Electron Multiplier (GEM) and its working principle

Feb 2016

a 50 micron polyimide foil with a 5 micron Cu layer deposited on both sides of polyimide

- Active medium is a gas mixture.
- electron multiplication takes place in holes of two copper foils separated by kapton

Basic elements of a GEM chamber:

- 1. Drift plane
- 2. Amplifying element GEM
- 3. Readout Plane

Cascaded GEMs can give higher gains and have lesser spark proability

32

Prototype fabrication at VECC

Thermal stretching and framing of 31 cm x 31 cm large size GEMs at VECC

Flavour meet, SINP, Kolkata, 03-05 Feb 2016

Beam test of GEM prototype chambers

Aim:

- -- to test the response of the detector to charged particles. mainly in terms of efficiency, cluster size, gain uniformity, rate handling capability
- -- testing with actual electronics for CBM: nXYTER nXYTER is a 32 MHz, 128 channel self triggered ASIC first developed by DETNEE collaboration for neutron measurements.
 - coupled to ROC(ReadOut Controller)
 and then fed to the DAQ.
- -- testing with the actual CBM DAQ

The nXYTER ADC spectra is inverted as compared to conventional picture, this has to be subtracted from a baseline value channel by channel

Test setup at Jessica beamline at COSY (Julich)

Beam spot (for high intensity runs), 2.3 GeV/c protons

Beam profiles as seen by 10 cm x 10 cm prototype and 31 cm x 31 cm prototype (right)

Test Results

self triggered mode

Published in NIMA

Rate test

using high intensity Cu X-ray source in RD51 lab at CERN, with conventional electronics

Gain remains almost stable with rate Highest Rate in this picture ~ 1.4 MHz/cm²

Test with absorbers – MiniMUCH at CERN SPS, H4 beamline. Pion beams of GeV/c(with some muons and electrons)

Reconstructing the track using GEM1 and GEM3 and Projecting the hits at plane_GEM2 and finding the distribution of residuals

Building a Real size MUCH sector prototype

Layout -- one layer of MUCH on a Drive

42

of sectors, FEB, area, etc.

Station # for SIS100	Layer #	Total no of pads	R1 (cm)	Pad size (min)	R2 (cm)	Pad size (max)	Area (sq.mt)	No of 128 channel FEB/layer (round off)	No of Sector per layer
1	1	28800	25	4.36mm	100.25	17.48mm	2.95	240	16
	2	28800	25	4.36mm	100.25	17.48mm	2.95	240	16
	3	28800	25	4.36mm	100.25	17.48mm	2.95	240	16
2	1	30600	34.5	5.9mm	146.9	25.4mm	6.4	240	24
	2	30600	34.5	5.9mm	146.9	25.4mm	6.4	240	24
	3	30600	34.5	5.9mm	146.9	25.4mm	6.4	240	24

Station	Layer	Total	R1	Pad size	R2	Pad size	Area	No of 128	No of
# for	#	no of	(cm)	(min)	(cm)	(max)	(sq.mt)	channel	Sector
SIS300		pads						FEB/layer	per layer
								(round off)	
1	1	28800	25	4.36mm	100.25	17.48mm	2.95	240	16
	2	28800	25	4.36mm	100.25	17.48mm	2.95	240	16
	3	28800	25	4.36mm	100.25	17.48mm	2.95	240	16
2	1	30240	29.5	5mm	123.5	21.3mm	4.5	240	20
	2	30240	29.5	5mm	123.5	21.3mm	4.5	240	20
	3	30240	29.5	5mm	123.5	21.3mm	4.5	240	20

Sector Chamber elements – (old design)

Real size readout PCB designed at VECC

Readout PCB inner side

Readout PCB outer side with FEB connectors

Real size GEM foil

For CBM MUCH -- GEM foils having 24 HV Segmentation.

Stretching of GEM foils – glue-less approach – "ns2"

- •Now all the three layers of each clamp segment are fastened together with screws at select places. While designing the layout of the GEM foil some circular copper patterns are generated at the edges to enhance the grip of the edge clamp segments.
- •The clamp segments are provided with an internal groove to accommodate a stainless steel nut. Thus after assembly of the segment a screw can be inserted sideways through the segment which mates with the embedded nut Fig.xx
- •The outer chamber frame has provision to insert screws from side walls through a small gas tight Oring seal and the screw can be coupled to the embedded nut in the corresponding clamp segment.
- •After clamping all the foils the screws on the sides of the chamber frame can be tightened to stretch the foils in-situ .The screws are tightened until optimum tension is reached in all the three GEM foils.
- •HV contacts are brought out of the foils through spring contacts. This needs further improvement.
- •For large scale production it may be possible to mould the clamp segments with some engineering plastic like PEEK.

This method completely eliminates the slow gluing procedure and suitable for large volume production of chambers. Also since the grid-spacers are absent in the active zone, sparking probability due to glass filaments on the grid edges is eliminated. The chamber is opened for GEM replacement.

GE 1/1 for CMS

Figure 8: Position of power connectors for GEM foils.

GEM foils for Real-size prototype

Response of the real size prototype to Fe55 X-rays

Heavy Flavour meet, SINP, Kolkata, 03-05 Feb 2016

Beamtest of real size prototype at JESSICA@COSY, Juelich

Beam spots at different positions of the prototype

Technical Design Report for the CBM

Muon Chamber (MUCH)

The CBM Collaboration

December 2013

Technical Design Report

Submission for internal review: 21/10/13

Review: 7-8 Nov 2013

Submitted to FAIR: December 2013

Approved – December 2014

(VECC + 12 Indian Institutes, GSI Darmstadt, PNPI Gatchina, JINR Dubna)

Summary

- Dimuon measurement is at the core of the CBM physics program
- Feasibility studies performed for a layout with segmented absorber and detector triplets
- Different detector technologies will be implemented at different stations
- SIS100 layout R&D completed, can be extended to SIS300 chambers
- First Real size Prototype using "ns2" stretching assembled and tested successfully with proton beams and using self triggered nXYTER electronics. New radiation hard chip for actual experiment would be available soon.
- Mechanical design underway for superstructure and detector chambers.
- GEM module production may start early next year.

Thank You

BACKUPS

Experiments exploring dense nuclear matter

Experiment	Energy √s _{NN} (Au/Pb beams)	Observables	Reaction rates Hz	
STAR@RHIC BNL	7 – 200 GeV	hadrons, electrons, muons	1-800 (limitation by luminosity)	
NA61@SPS CERN	6.4 – 17.4 GeV	hadrons	80 (limitation by detector)	
HADES@SIS18 GSI	< 2.4 GeV	electrons, hadrons	2-10 ⁴ (limitation by detector)	
Future/planned Experiments:				
CBM@SIS FAIR	2.7 – 4.9 GeV 2.7 – 8.3 GeV	hadrons, electrons, muons	$10^5 - 10^7$ (limitation by detector)	
MPD@NICA Dubna	4.0 – 11.0 GeV	hadrons	100 - 1000 (limitation by luminosity)	

Cooled plate for FEB cooling

Background - muons

Particles identified as muons = reconstructed after MUCH (25 AGeV central Au+Au)

Total number allows for a trigger also for LMVM

J/ψ setup (no TOF)

Picture of the triple GEM prototype chambers

built at VECC

built by GSI Colleagues

(GEMS stretched and framed at GSI)

Parameter	GEM chamber (VECC)	GEM chamber (GSI)
Drift gap	3 mm	3 mm
Transfer gap-1	1 mm	2 mm
Transfer gap-2	1 mm	2 mm
Induction gap	1.5 mm	2 mm
Segmentation	3 mm x 3 mm	6 mm x 6 mm
Number of pads	512	256

CBM @ SIS-100 & SIS-300

The first years of CBM operation will be at SIS-100 with a start setup

Beam	p _{lab, max}	√s _{NN, max}		
heavy ions (Au)	11A GeV	4.7 GeV		
light ions $(Z/A = 0.5)$	14A GeV	5.3 GeV		
protons	29 GeV	7.5 GeV		

CBM at SIS-300

Beam	p _{lab, max}	√s _{NN, max}
heavy ions (Au)	35A GeV	8.2 GeV
medium ions (In) (Cu)	38A GeV 41A GeV	8.5 GeV 8.9 GeV
light ions $(Z/A = 0.5)$	45A GeV	9.3 GeV
protons	90 GeV	13 GeV

.... at interaction rates up to 10 MHz (J/ ψ)