PALS Research Infrastructure

Libor Juha

PALS RESEARCH CENTRE Institute of Plasma Physics & Institute of Physics Czech Academy of Sciences juha@fzu.cz

May 2016

PALS = Prague Asterix Laser System

64.2

a large-scale European laser facility since 2000 (built as ASTERIX IV)
a joint laboratory of the Institute of Plasma Physics and the Institute of Physics of the Czech Academy of Sciences
LASERLAB founding member (2004)

PALS HISTORY

EU cooperation

- Transfer of ASTERIX IV laser from MPQ 1998-1999
 Initial investment 1 DM + the PALS laser hall
- PALS Research Centre self-coordinated access project 5th FP 2000-2003
- The first experiments of EU users: SEP 2000
- LASERLAB-EUROPE I 2004-2008, 6th FP
- LASERLAB-EUROPE II 2009-2012, 7th FP
- LASERLAB-EUROPE III 2012-2015, 7th FP
- LASERLAB-EUROPE IV 2016-2019, Horizon 2020
- EURATOM Keep-in Touch Activities on ICF

Domestic support

Czech National Research Centres Programme of the Ministry of Schools, Youth and Sports

Consortium project by IP, IPP and CTU in Prague

- Laser Plasma Research Centre 2000-2004
- Laser Plasma Centre 2005-2011

Czech Roadmap of Research Infrastructures

• **PALS Research Infrastructure** 2011-2015, prolonged for a period of 2016-2019

Brief History of the Czech HP-Laser Research

pulsed terawatt single beam iodine photodisociation laser

Fundamental wavelength $1 \odot = 1315.2 \text{ nm}$ (near IR)Red, blue and near-UV harmonic beamsPulse duration:~ 0.4 nsOutput energy at $1 \odot$:10 J - 1 kJOutput power:3 TWOutput beam diameter:290 mm

PALS specific features

- iodine gas laser, unique by its working wavelength 1.315 nm and very narrow laser line (line half-width ~ 10 GHz)
- one of a few lasers providing kJ in a single beam configuration

6 gas laser amplifiers + 6 spatial filters Main, auxiliary and diagnostic different-color beamlines

scheme of the kJ laser system

PALS output parameters: a bandwidth

Hyperfine structure of laser transitions in atomic iodine

W. Fuß, K. Hohla: Z. Naturforsch. 31a, 569 (1976)

Ti:Sapphire laser chain at the PALS facility

25-TW 10 Hz Ti:Sa beamline 1.5 J / 45 fs fully operational since 2011 (dazzler will be installed in 2017)

Beam distribution to Ti:Sa and PALS interaction bays

Three-frames interferometer with mutual delay of 300 ps

PALS target facilities

A system of two connected interaction chambers An irradiance at the target > 10¹⁶ W/cm² Several different-colour laser beam lines Both point and linear focusing optics available Advanced ion, UV-Vis-NIR, XUV and x-ray diagnostics Several schemes for XUV laser experiments: both QSS and TG Single- and double-stream gas-puff targets **Equipment for shock wave studies 3-frame interferometer for fs probe beam**

Neon-like zinc XRL driven by multi-100-ps NIR laser pulses

Active medium: a plasma column created from slab target by linearly focused NIR laser beam

focusing scheme of Ne-like Zn soft x-ray laser

PALS Research Programme

Interaction of short- and long-wavelength laser radiation with matter

ICF-relevant and ELI and HiPER-related target experiments

- Target ablation phenomena, WDM studies
- Generation and interaction of plasma jets
- Non-linear phenomena in laser-plasma interaction
- Plasma and macroparticle acceleration
- Shock wave studies

Laboratory astrophysical and cosmochemical experiments

- Simulation of protostellar jets and Herbig-Haro objects
- HDP opacity measurements and laser-plasma chemistry

S&T applications of laser-produced plasmas

Development of laser ion sources

- Ion acceleration in laser-produced plasmas
- Ion implantation

Development of plasma XUV radiation sources

- Plasma-based XUV lasers and amplifiers, XUV interferometry
- HHG XUV radiation sources, XUV ablation and nanopatterning

Advanced methods of plasma diagnostics

Creating and probing WDM by XUV lasers XUV spectroscopy and imaging of hot plasmas Ion charge/mass spectroscopy and radiation detection

HiLASE & ELI-Beamlines: present status

The Extreme Light Infrastructure

The mission of ELI Beamlines

1. Primary sources: maximizing peak and average power at ELI Beamlines and HiLASE, respectively

Development, optimization and applications of various secondary sources of energetic photons and charged particles

3. High-field physics experiments at an irradiance level of 10²³-10²⁴ Wcm⁻²

4. Development & testing new technologies for multi-PW laser systems

- kJ beamline to generate 10 PW peak power
- 10 PW generation: mixed Nd:glass providing spectral bandwidth for direct pulse compression to <150 fs
- Nanosecond pulses with programmable temporal shape for sophisticated laser-plasma experiments
- PW auxiliary beam for plasma probing
- Future use as OPCPA driver for generation >10 PW power
- Selection of supplier in progress

L4

L4 performance requirements

Parameter		Value
Main beam		
Energy		1.2 kJ in a single aperture
Peak power		10 PW
Auxiliary beam		
Energy		150 J in a single beam
Peak power		1 PW
Both beams		
CPA regime	Output pulse duration (FWHM)	≤150 fs
Non-CPA regime	Output pulse duration	0.5 to 5 ns (adjustable)
	Time step of pulse tempora shaping	150 ps
Shot rate		1 per minute
Contrast (main pulse to pre-pulse/s power)		1:1011
Shot-to-shot pulse energy RMS stability		<10%
Beam pointing stability		<10 µrad
Output beam quality: encircled energy in diffraction limited spot		60%
Energy in 2 nd and 3 rd harmonics		≥800 J
Operation		Independent, externally synchronizable

projekt podporovaný:

thank you for your attention