

Current status and upgrades of the PHELIX facility

V. Bagnoud for the PHELIX team

NEILS Workshop GSI Darmstadt, 9th – 11th May 2016

PHELIX: a user-oriented facility

- PHELIX operates as a user-oriented facility during the construction of FAIR
 - 8 months of operation/year
 - Active control on the beam intensity ensures beam intensities above 10²⁰ W/cm² in routine operation
 - dual science and program-driven (FAIR & Helmholtz) studies

Towards FAIR

summary

- The LIGHT beamline and the Athena project should ensure a visible mid-term research program
- Laser activities for the plasma physics cave: 100 J laser for FAIR
- PHELIX pre-amplifier upgrade as a testbed for high repetition rate glass amplifiers

PHELIX – An Overview

PHELIX: a user-oriented facility

- Operation since 2008
- 60% beam time in 4 week cycles
 - 1 week preparation
 - 2 weeks experiments
 - 1 week maintenance/reconfiguration
- 700 1000 target shots per year
 - 3 % failed shots (2015)

operation statistics 2015

Beam aberration control at PHELIX

1

principle estimates of the a₀ parameters for PHELIX give values of >100

$$a_0 = \frac{1}{F^{\#}} \sqrt{\frac{P(W)}{0.8 \times 10^{10}}}$$

- Experimentally intensities at 10¹⁹ W/cm² (a₀ ~ 3 7) have been observed when no active beam control is applied and intensities in the mid 10²⁰ W/cm² (a₀ = 15 - 20) when active correction is applied.
- The reason for that is: large-aperture system suffer from many types of beam aberration
 - static aberration (components, alignment)
 - on-shot aberration
 - thermal aberration
- Expectations of users > no aberration or as little as possible
 - minimizing static and thermal aberration
 - WYSIWYG (minimizing on-shot aberration), good characterization

Beam aberration control at PHELIX

- The principle of beam wavefront correction is simple but it has some pre-requisite
 - an excellent understanding of the system is necessary
 - enough dynamic range of the active device
 - -> outsource simple beam distortions (defocus, pointing, astigmatism)
 - A correction at the compressor input is mandatory to avoid spatiotemporal coupling

Beam quality control and management

knobe	Aberration			
KIIODS	static	on-shot	thermal	
specification	х			
Adaptive optics (DM)	х	x	x	
Defocus (lens)		х	x (in the future)	
Astigmatic mirror		х		
High-perf diagnostics	х	х	x	

control system

astigmatic mirror

deformable mirror

GSI Helmholtzzentrum für Schwerionenforschung GmbH

Functional requirements for on-shot aberration

- On-shot aberration must be
 - pre-compensated just before the shot (max 1 min) D.M., lens, Astig. Mirror.
 - blind (without retro-action, optimization)

MM1 mirror with astigmatism compensation

0.02 0.01 Applied force (a. u.) -200 -150 -100 -50 50 100 00 -0.02g 0.03 stigmatismus 0,04 -0.05 -0,06 -0,07 ◄

in standard operation Feb. 2016

test of linearity

0.03

-0,08

Some recent results owing to the better focus

 in a recent experiment, 85 MeV protons were observed using PHELIX and submicrometer foils

F. Wagner et al. accepted for PRL

GSI Helmholtzzentrum für Schwerionenforschung GmbH

NEILS Workshop GSI Darmstadt, 9th – 11th May 2016

Upgrade of LIGHT & ATHENA

- The LIGHT beamline at GSI shows promising results: sub nanosecond, > 10⁹ particles pulses
- possible applications are: material research, WDM (in the future), stopping power studies
- A pump-probe experimental setup has been proposed for LIGHT
 - 100 m² CR
 - dedicated TC
 - experimental chamber, with nhelix

Schleuse

TC2

THELIX

Status of the early laser diagnostic at FAIR $\mathbf{G} = \mathbf{G} \mathbf{I}$

Z Requirements have been settled

Energy	Repetition rate	Pulse duration	Pulse shaping	frequency
100 J	1 shot per min	0.1 – 20 ns	yes	2ω

- Concept for the laser architecture proposed
 - procurement of test sample for critical components started (glass rods)
- Concept for the implementation in the building done
- TDR has been approved, R&D partially funded by BMBF

FACILITY FOR ANTIPROTON AND ION RESEARCH

Laser-based pump-probe equipment for the APPA cave at FAIR

Technical Design Report for the HEDgeHOB/WDM collaborations at FAIR V. Bagnoud, A. Blažević, U. Eisenbarth. P. Neumayer, M. Roth. D. Schumacher

GSI Helmholtzzentrum für Schwerionenforschung GmbH

PHELIX Pre-amplifier Upgrade (2016)

- Motivation: gain some experience with thermally loaded amplifiers
 - thermal effect compensation
 - operation in with repetition rate
 - prototype for the 100 J laser for FAIR
- Goals: 20 J, 3 shots/min (0.05 Hz)

GSI head design test of glass from SIOM (N31) and Schott (APG-1)

Power supply from commercial provider (Continuum, 2kV max)

implementation in June –July 2016 (6 weeks shut down)

Validation of the 45-mm glass-rod head

PHELIX shows steady improvements while serving the community

- PHELIX operates as a user-oriented facility during the construction of FAIR
 - 8 months of operation/year
 - Active control on the beam intensity ensures beam intensities above 10²⁰ W/cm² in routine operation
 - dual science and program-driven (FAIR & Helmholtz) studies
- Towards FAIR
 - The LIGHT beamline and the Athena project should ensure a visible mid-term research program
 - Laser activities for the plasma physics cave: 100 J laser for FAIR
 - PHELIX pre-amplifier upgrade as a testbed for high repetition rate glass amplifiers

SI Darmstadt, 9th – 11th May 2016

GSI Helmholtzzentrum für Schwerionenforschung GmbH

*Wagner, F., et al Applied Physics B 116.2 (2014): 429-435.

Temporal contrast - Status

- ultimate contrast around 10⁻¹² (non directly measurable)
- A tunable contrast between 10⁻⁶ and 10⁻¹⁰ (measurable)
 - pre-amplification with an uOPA* for improved signal-to-noise ratio

Temporal contrast - Influence of the slow rise

- an instantaneous onset of the laser light is not the most ideal case
 - reduced absorption/coupling efficiency to a few % for solid targets
 - plasma mirror effect
 - verified in PIC codes

