

The procedure of beam extraction with longitudinal feeding at COSY-Juelich

H. Stockhorst for the COSY-team
Forschungszentrum Jülich GmbH, Institut für Kernphysik/COSY

The Slow Extraction Workshop

June 01 – 04, 2016, GSI Darmstadt, Germany

Content

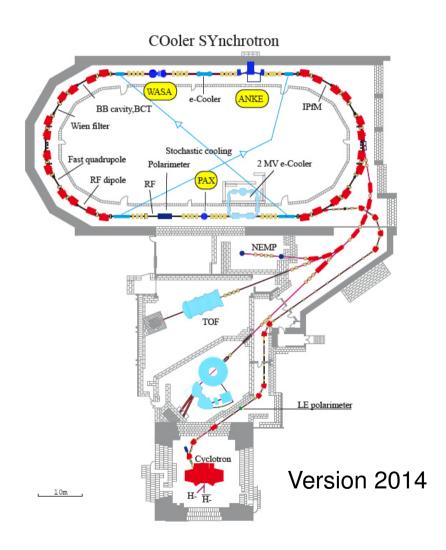
- Sketch of Extraction Development at COSY
- COSY Layout and Main Parameter
 - Extraction Layout and Components
- Extraction: Longitudinal Aspects
- Spill Time Structure (Example)
- Backup Slides Extraction: Transverse Aspects

Sketch of Extraction Development at COSY

- 1991: Theoretical Studies of Ultra Slow Extraction for COSY
- Inauguration COSY 1993
- EPAC 1996: First Resonant Extraction, Conventional Method
- EPAC 98: Stochastic Extraction at COSY
- Stochastic Extraction is now well established in a wide momentum range

Floorplan COSY and Main Parameters

- Circumference: 184
- Straight section: 40 m (telescopes with 2 π phase advance)
- Arc section 52 m
 (three cells, each
 QF-D-QD-D-QD-D-QF)
- Protons and deuterons momentum range 300 (540) MeV/c to 3300 MeV/c
- Polarized and unpolarized particles
- 100 keV electron cooler at injection and new 2 MeV cooler
- Stochastic cooling above 1.5 GeV/c
- Three extraction beam lines
- Beam extraction in the whole momentum range



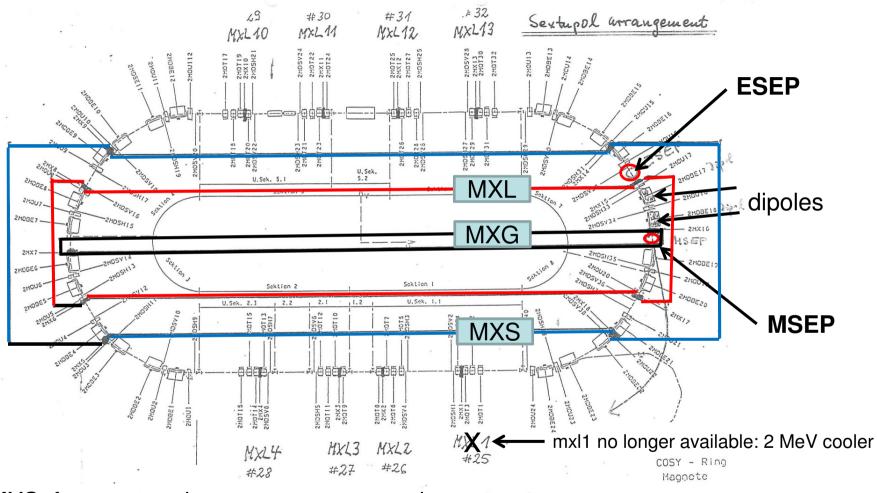
Quadrupole and Sextupole Distribution

Bending Magnets Sextupoles # 17 number: number: radius. 7 m no. of families: angle: 150 eff. length: 0.3/0.2/0.1 m 023-16T field range: aperture radius: 85 mm max. gradient: 30 T/m² Quadrupoles in the arcs number: 24 no. of families: $0.3 \, \mathrm{m}$ eff. length: aperture radius: 85 mm 3 families of sextupoles in the arc 7.5 T/m max. gradient: section for chromaticity correction Quadrupoles in the telescopes number: 32 7 8 sextupoles for resonance in the no. of families: straight sections eff. length: 0.55 m 85 mm aperture radius: max. gradient: 7.5 T/m

Sextupoles:

- In the arcs to adjust chromaticity (Hardt condition)
- In the telescopes with dispersion zero to adjust resonance strength

Sextupole Distribution

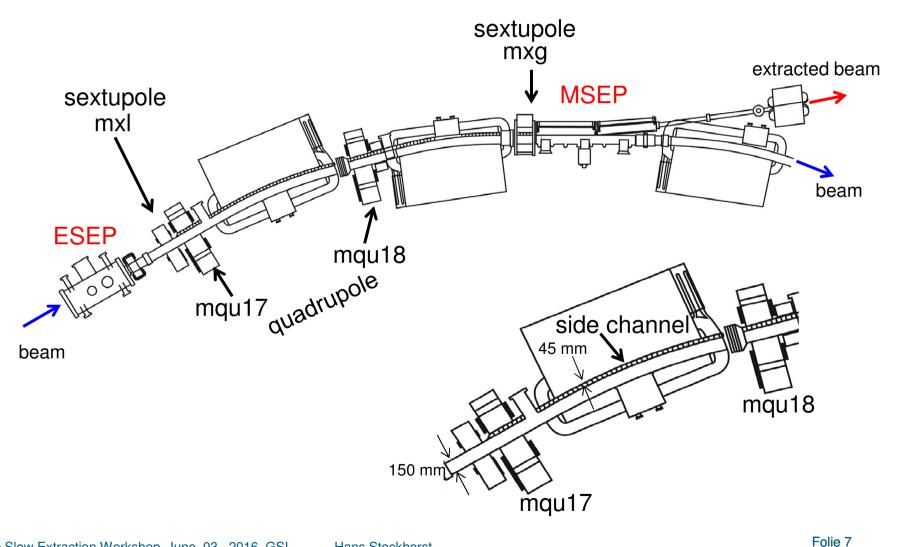


MXS: four sextupoles at one power supply MXL: four sextupoles at one power supply

MXG: two sextupoles at one power supply

Chromaticity correction only

Arc Section and Extraction Elements



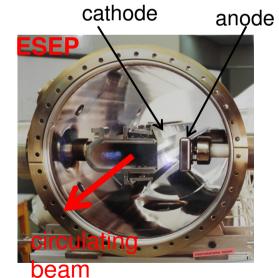
MSEP

Main data ESEP and MSEP

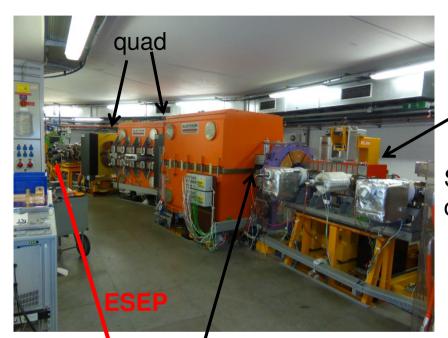
ESEP

max. energy	2.5	GeV
max. momentum	3.3	GeV/c
deflection	3.5	mrad
max. voltage	200	kV
max. gradient	120	kV/cm
gap width	12 - 40	mm
radial position variation anode and cathode	± 20	mm
angle resp. to closed orbit	± 2	mrad
anode thickness	0.1	mm
length	1	m

max. field	1.1	Т
length	2 x 1	m
deflection	2 x 5	degrees
max. current	2740	Α
inner side	88	mm
outer side	120	mm
gap	32	mm

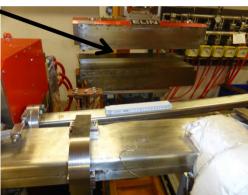


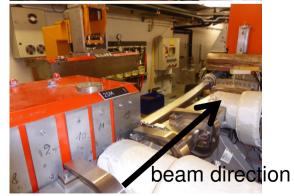
Extraction Elements at COSY

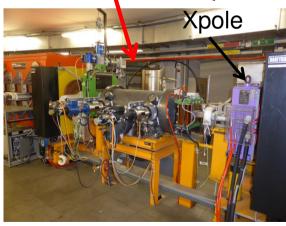


MSEP

Second part: - disassembled





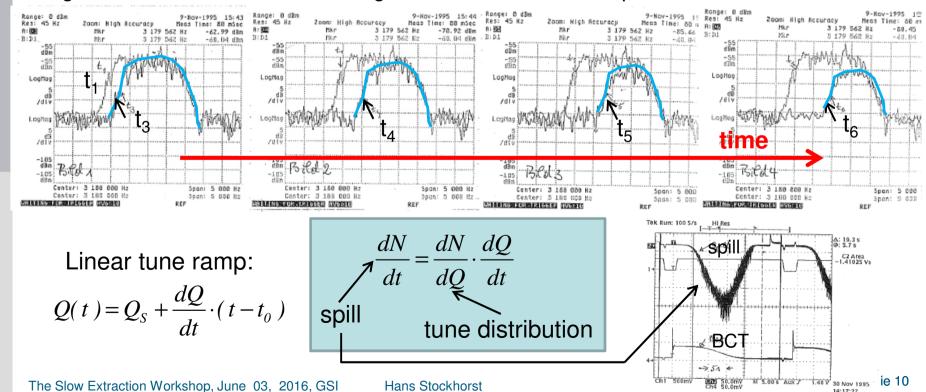


beam

Conventional Extraction Method

- The beam is slowly swept across the resonance with constant speed by moving the tune.
- Circulating beam intensity distribution behaves like a *rigid body*:
 Hard resonance edge for all particles!
- For a constant spill the beam edge should never be repelled from the resonance! Otherwise ripple modulations.

Longitudinal beam distributions during extraction of 800 MeV/c protons:



Stochastic Beam Extraction with Swept Band-Limited White Noise

- The main difference to the conventional extraction method is in the way the particles are driven to the third order resonance.
- The average tune of the beam and thus the lattice optics is not changed.
- Instead, the beam distribution is longitudinally heated by adding noise around a revolution harmonic.
- A diffusion in tune is created by a proper setting of the horizontal chromaticity to accelerate the particles into resonance.

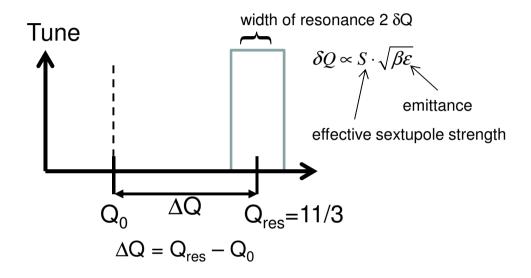
S. van der Meer, "Stochastic Extraction, a Low-Ripple Version of Resonant Extraction", CERN/PS/AA 78-6

R. Cappi, W.E.K. Hardt and Ch.P. Steinbach, "Ultraslow Extraction with Good Duty Factor", 11th International Conference on High-Energy Accelerators, Geneva, Switzerland, July 7–11, 1980

The LEAR team, "Performance of LEAR", IEEE Transactions on Nuclear Science, Vol. NS-32. No. 5, October 1985

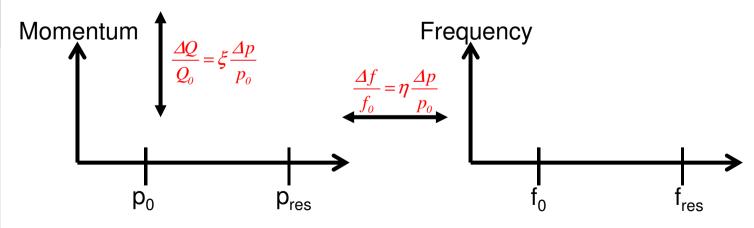
Michel Chanel, "LEAR Performances", Proc. of the LEAR Symposium, CERN, 15th May 1999, CERN/PS 99-040 (CA)

Feeding the Resonance



Some possibility:

- Classical method:
 Move the tune (lattice change)
- Horizontal heating the beam: increase the emittance
- Longitudinal heating (COSY)
- Betatron core



Step 1:

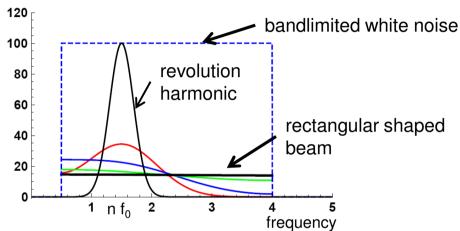
- Beam Momentum Distribution Shaping
 - Gaussian beam → Uniform beam distribution

Step 2:

- Uniform noise is applied that always covers the resonance.
- The carrier frequency is slowly moved towards the shaped beam distribution.
 - Particles diffuse into the resonance and are extracted.

Beam Shaping as Preparation for Extraction

Beam shaping in longitudinal phase space



Conservation of particle number:

$$\frac{\partial}{\partial t} \Psi(x,t) = -\frac{\partial}{\partial x} \Phi(x,t)$$

Particle flux: $\Phi(x,t) = -D \cdot \frac{\partial}{\partial x} \Psi(x,t)$

Band-limited white noise is sent to a longitudinal kicker, BB cavity at COSY. Bandwidth W. Noise kicker voltage U_{rms} .

- The noise density covers a revolution harmonic $n f_0$ of the beam.
- Shaping is applied for approximately 1 s and the beam attains a rectangular (uniform) distribution
- Shaping with noise induces a diffusion process described with a Fokker-Planck equation:

$$\frac{\partial}{\partial t} \Psi(x,t) = D \cdot \frac{\partial^2}{\partial x^2} \Psi(x,t)$$

is zero outside the noise bandwidth

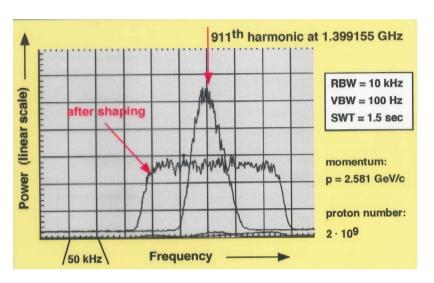
$$x = f \text{ or } \Delta f \text{ or } \Delta Q$$

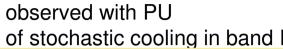
or $x = \Delta p/p_0$

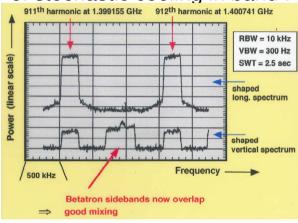
Diffusion constant D in frequency or momentum space:

$$D_{\Delta f} = \frac{f_0^2}{2W} \frac{(\eta n f_0)^2}{\beta^2 (pc)^2} (e U_{rms})^2 \qquad D_{\Delta p/p_0} = \frac{f_0^2}{2W} \frac{(e U_{rms})^2}{\beta^2 (pc)^2}$$

Longitudinal Beam Shaping Experiments



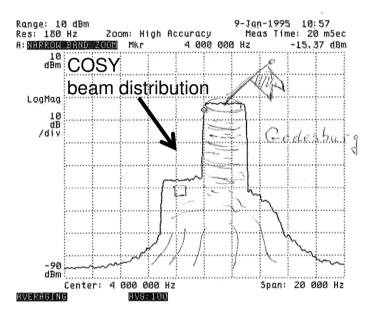




- Rectangular shaped noise with width W = 1 kHz applied to the 4th revolution harmonic
- Longitudinal momentum distribution rectangular ⇒ transverse sidebands rectangular
- Shaping time 1 s
- Width of 4th harmonic without noise 340 Hz
- The resulting width of the revolution harmonic 911 agrees with $W = 911 \cdot \frac{1kHz}{4} = 228 Hz$
- Necessary voltage: U_{rms} = 77 V, noise power into 50 Ω : 120 W, spectral noise density: S = 120 mW/Hz

Just for Fun

Digital Noise Generator: arbitrary waveform possible

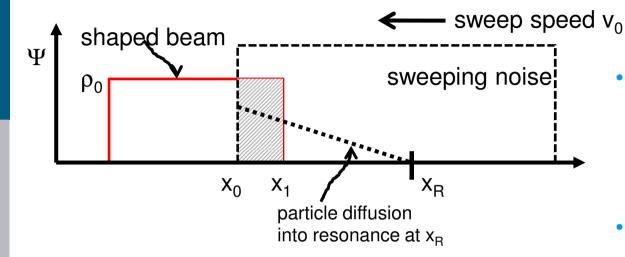


 superimposed noise on the COSY beam results in

Godesburg in Bad Godesberg near Bonn 1900*)

The Godesberger spectrum

Beam Extraction with Swept Noise



- Band-limited white noise permanently covering the resonance is swept over the beam with speed v_0 .
- Diffusion equation with diffusion coefficient D

In the vicinity of the resonance:

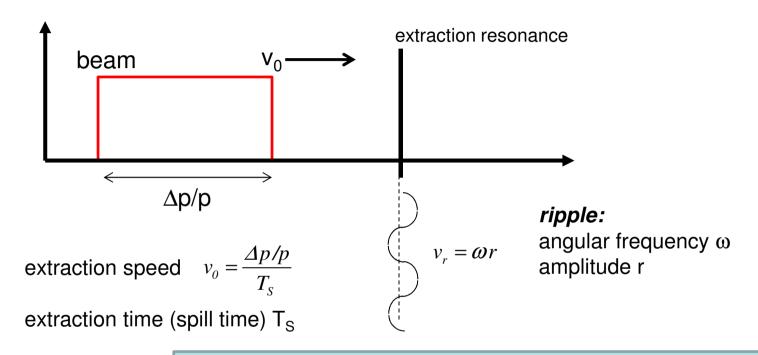
$$\Psi_0(x) \approx -\frac{v_0 \cdot \rho_0}{D}(x - x_R)$$
 \Rightarrow $\Psi_0(x_R) = 0$

The number of particles that are extracted per sec is given by

$$\Phi_{ex}(t) = \Phi(x_R, t) = -D \cdot \frac{\partial}{\partial x} \Psi(x_R, t)$$
 and yields the **constant flux** $\Phi_{ex}(t) = \Phi_0$

W. Hardt, "Remarks on Stochastic Extraction", PS/DL/Note 78-5

Classical extraction:

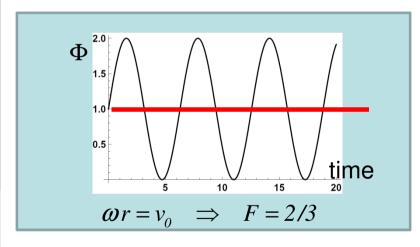


$$v_0 << v_r \implies \text{high ripple modulation: BAD}$$

 $v_0 >> v_r \implies \text{Low ripple modulation: but spill time T}_S \text{ small}$

Stochastic extraction:

- Particles diffuse into the resonance with speed $\langle v \rangle = \frac{v_o \cdot \rho_o}{\Psi_o(x)} >> v_o$
- In the vicinity of the resonance the average speed <v> becomes large
- Spill time can be made large
- Less sensitivity to power supply ripple



$$\omega = 2\pi 50 Hz \quad r = 10^{-4}$$

$$\Delta p/p = 1.5 \cdot 10^{-3} \implies T_S \le 420 \, ms$$

Spill quality (Duty factor)*):

conventional:

$$F = \frac{\left\langle \Phi \right\rangle^2}{\left\langle \Phi^2 \right\rangle} = \frac{1}{1 + \frac{1}{2} \left(\frac{\omega r}{v_0}\right)^2} \qquad 0 < F < 1$$

stochastic:

$$F = \frac{\langle \Phi \rangle^2}{\langle \Phi^2 \rangle} = \frac{1}{1 + \frac{1}{2} \frac{\omega r^2}{D}} \quad \text{adjust:} \quad D > \omega r^2$$

*) L. Badano et al., "PROTON-ION MEDICAL MACHINE STUDY (PIMMS) PART I", CERN/PS 99-010 (DI), 1999 Marco Pullia, PhD Thesis, 1999: "Dynamics of slow extraction and its influence on transfer lines design", http://spazioweb.inwind.it/mgp homepage/

the mean diffusion velocity <v> is given by:

$$\left| \left\langle v \right\rangle = \frac{v_0 \cdot \rho_0}{\Psi_0(x)} >> v_0 \right|$$

- In the vicinity of the resonance $(x \approx x_R)$ the diffusion velocity becomes large.
- Less sensitivity against ripple as compared to conventional extraction method where the sweep is carried out with the speed v₀ to move the tune.
- The mean velocity depends upon the diffusion coefficient D.
- Therefore D should be large.
- But: If D is too large some particles will eventually not be extracted.

Limitations

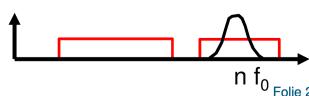
- Too much power (too large diffusion D) should be avoided:
 - more unwanted amplifier noise

non-linearities of power amplifiers introduce intermodulation products
 with the result:

- The selected bandwidth should be not too small: correlation time $\tau \sim 1/W$ of noise becomes small
 - ⇒ spill modulated with carrier frequency of the (shaping/sweeping)noise
- If t_{ex} is the time an unstable particle needs to move along the separatrix branch to the ESEP, then, to avoid ripple: $t_{ex} >> \tau$
 - Example: a particle needs roughly 1000 revolutions in the ring to reach the ESEP. One revolution 1 μ s. Thus $t_{EX} = 1 \text{ ms}$ and the bandwidth should be W > 1 kHz.

Remedy:

- Use a high harmonic number n for the center frequency of the noise to make the bandwidth W large.
- Apply additional noise between the revolution harmonics.
 The additional noise does not affect the extraction but reduces the coherence time.
- Apply "chimney" noise covering the resonance.



Digital Noise Generator

Three independent systems available:

USE1: beam shaping

USE2: swept noise

USE3: chimney noise

Noise generator based completely on digital signal processing

Complex random sequence:

$$x(n) = \frac{1}{N} \sum_{s=0}^{N-1} \hat{x}(s) e^{-i2\pi s n/N}$$
 random sequence $\hat{x}(s)$ *n*, *s* integers

Band-limited white noise:

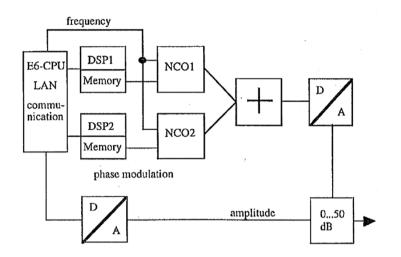
- The amplitudes $\hat{x}(s) = Ae^{-i\varphi(s)}$ are non-zero for $s \le s \le s_+$
- Phases $\varphi(s)$ uniformly distributed in $[0,2\pi[$
- The discrete power density is $S(f) = A^2/(N^2 \Delta f)$ at frequency $f = n \Delta f$ with frequency resolution $\Delta f = N \Delta t$.
- N large and Δf small: real and imaginary part nearly Gaussian distributed with zero mean.

The real part $X_R(n)$ of the complex band-limited signal x(n) centered at frequency f_0 can be written as **sum of two phase modulated cosine sequences**

$$x_{R}(n) = A \left\{ \cos(2\pi f_{0} n\Delta t + \Theta_{-}(n)) + \cos(2\pi f_{0} n\Delta t + \Theta_{+}(n)) \right\}$$

where the phase sequences $\Theta_{-/+}(n)$ are determined by the desired noise signal.

General layout*):



- Two digital signal processors (DSP) are used to calculate the desired phase sequences $\Theta_{-/+}(n)$ for a wanted noise signal off-line.
- The outputs of the numerically controlled oscillators (NCO) are added and fed into the DAC to produce the analog noise signal.
- No filters are necessary.
- Completely predictable design (investigate quantization/truncation impact etc. on spectrum)
- Arbitrarily shaped spectra possible (see Godesberger spectrum)
- Signal-to-noise ratio 60 dB
- Typical roll-off 180 dB/octave
- Spectrum is calculated only once. The center frequency up to 20 MHz is chosen online.
- Bandwidth 0.05 kHz up to 500 kHz in different steps
- Resolution $\Delta f = 6$ Hz, now down to 0.1 Hz
- Clock frequency 50 MHz, phase modulation 12.5 MHz
- Available noise power up to 500 W

^{*)} G. Heinrichs, H. Meuth, H. Stockhorst, A. Schnase, *A Narrow-Band Digital RF-Noise Generator*, Proc. of EPAC94, London, June 27 – July 1, 1994 - patents in Europe, Japan and the US have been released by the FZJ and the patent owner in 2001.

Beam Extraction

by Noise Feeding the Resonance

Extraction of an e-cooled Proton Beam

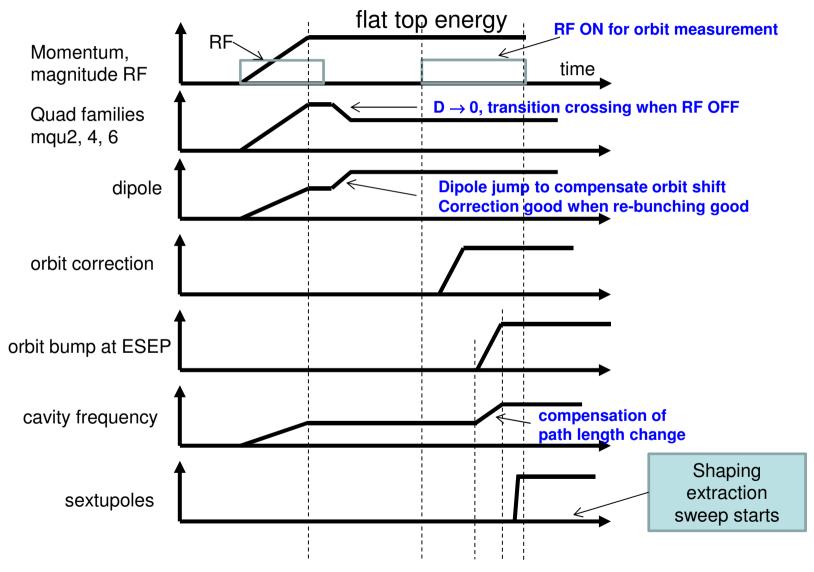
Momentum	1.57	GeV/c
Revolution frequency	1.402381	MHz
β	0.859	
γ	1.950	
Tune Q _x	3.655	
Tune Q _y	3.570	
Slip factor η	0.1	
Chromaticity ξ_x	+1.2	
ξ _y	-2.8	

Choice and Control of Extraction Parameters

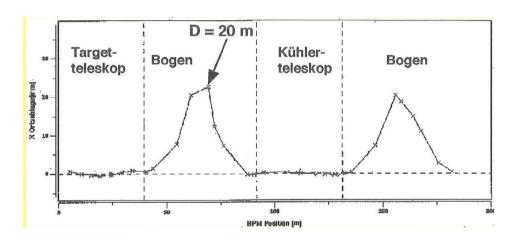
Many parameters must be controlled and adjusted:

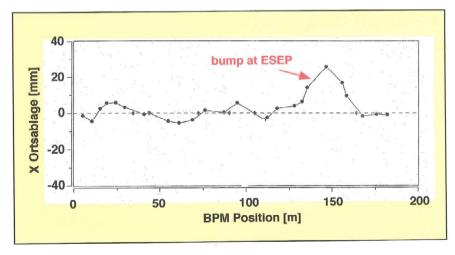
- Sextupole strength (emittance should be known)
- Angle of separatrix at ESEP (little program)
- Chromaticity (can be measured)
- Hardt condition (can be checked at wire chamber after MSEP, optimum if beam position does not vary during extraction)
- Momentum spread (can be measured)
- Orbit bump (can be measured, choice of amplitude depends on sextupole strength and thus spiral step)
- Angle kick in ESEP and deflection in MSEP
- Tune and beam shaping prior to extraction (shaping can be tuned so that spill becomes flat, no "initial" peak)
- Extraction noise (width and center frequency, no "initial" peak)
- Power adjustment
- Parameters are not independent from each other
 - Parameters are tuned to optimum extraction efficiency (> 80 %)

Ramp Procedure for Beam Extraction

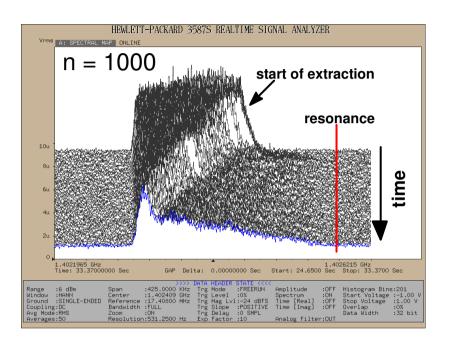


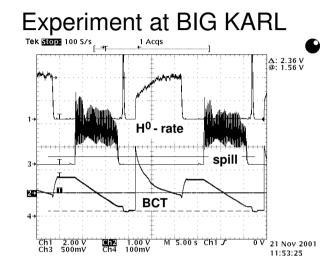
Dispersion and Orbit Bump at ESEP





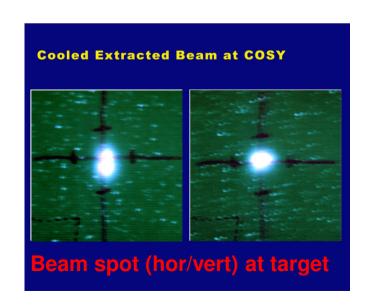
Longitudinal spectra of an e-cooled beam at 1.57 GeV/c



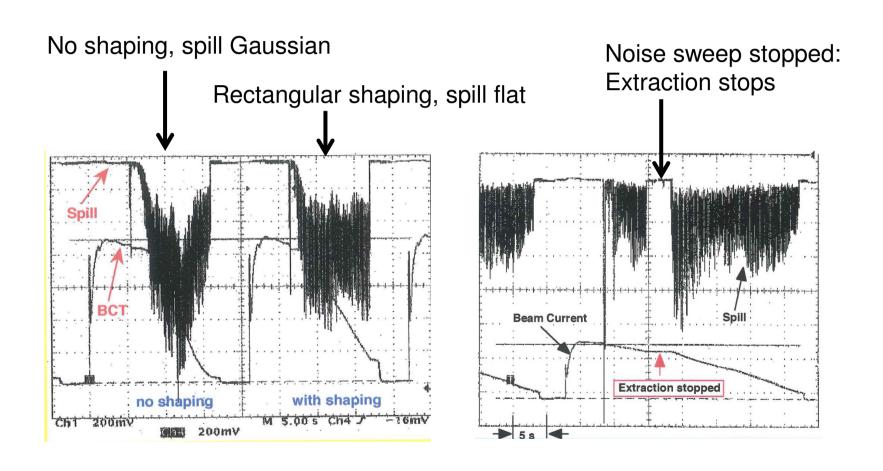


No losses when extraction starts!

- The resulting beam spot on a viewer placed in the scattering chamber of the experiment had a radius of 2 mm.
- The halo ratio for a 3 mm veto hole could be reduced from 2.5 · 10⁻² to 4.0 · 10⁻⁴ for a cooled beam.
- Thus the primary beam intensity can be increased by a factor of 60 for the same veto counting rate.
- Spill rate 109 protons/s
- Extraction efficiency > 80%



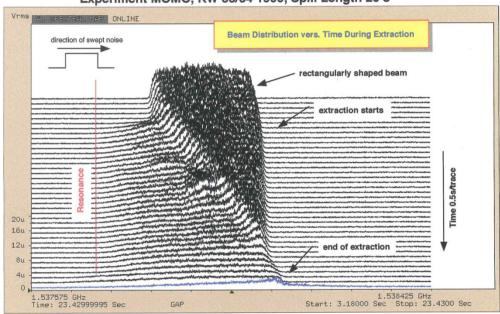
Spill Shape During Extraction

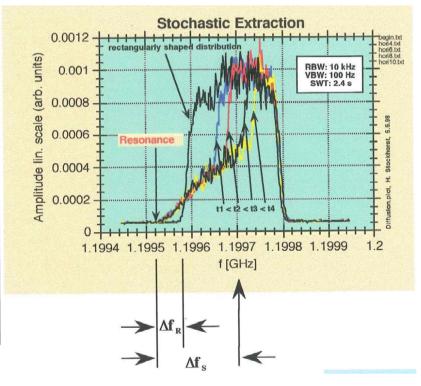


Extraction above Transition Energy

Stochastic Extraction at 2.6 GeV/c

Experiment MOMO, KW 33/34 1999, Spill Length 20 s



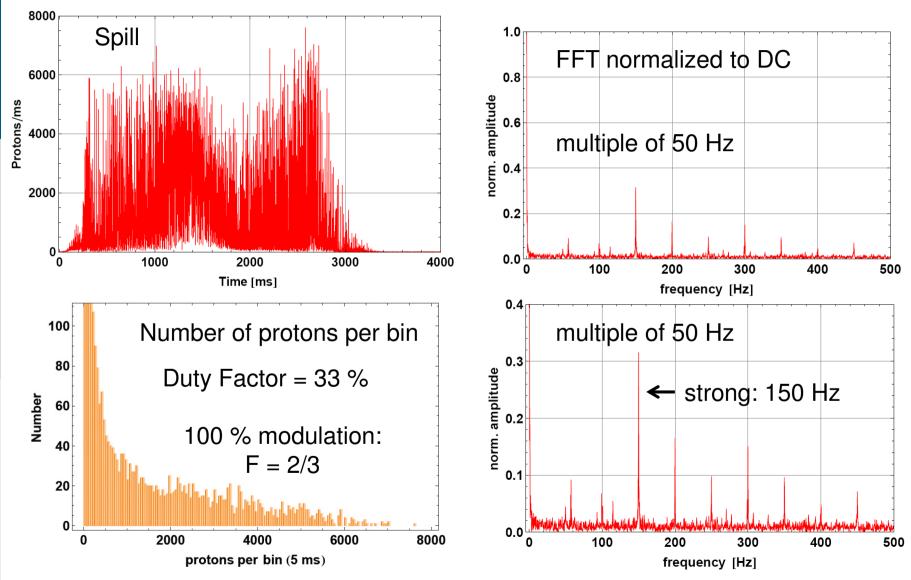


DiffExtra26.cdraw, H. Stockhorst, 24.8.99, Mess.: 20.8.99

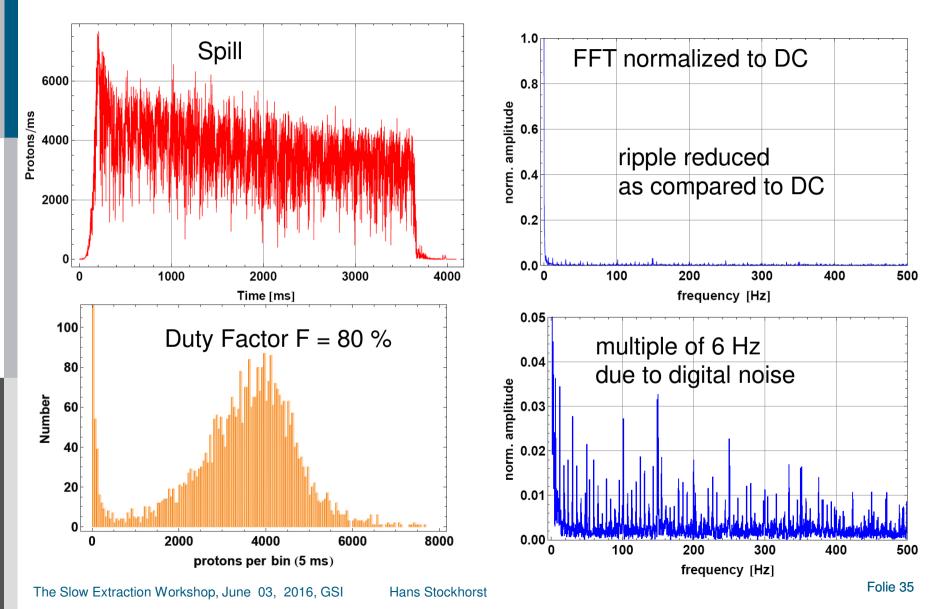
Spill Structure (Example)

- Proton momentum 796 MeV/c
- Spill duration app. 4 s
- Hodoscope signals measured with time interval analyzer HP 5372 A
- Bin width 1 ms, 4096 bins

Spill during conventional extraction



Stochastic Extraction Same conditions as before, but tune fixed



Summary

- Stochastic extraction at COSY in the whole momentum range
- Spill duration several minutes (1 h spill duration has been done)
- Extraction efficiency larger than 80 %
- Extracted beam width at target $\sigma_x \approx \sigma_v = 0.3 \text{ mm}$
- Extraction of polarized beams possible

Continuation: next talk

D. Prasuhn, Observations with slow extraction at COSY and cures

Thank you for your attention

Special thanks to

Michel Chanel

Backup Slides

Power Consumption (1)

diffusion in tune space:
$$D_{AQ} = \frac{1}{2} \frac{d \left\langle (\Delta Q)^2 \right\rangle}{dt}$$

with
$$\Delta Q = \frac{\xi Q}{\beta pc} \Delta E$$

$$D_{\Delta Q} = \frac{1}{2} \frac{(\xi Q)^2}{\beta^2 (pc)^2} \frac{d \langle (\Delta E)^2 \rangle}{dt}$$

Band-limited white noise at longitudinal kicker (BB cavity at COSY) of width W

$$\frac{d\langle (\Delta E)^2 \rangle}{dt} = \frac{f_0^2}{W} (eU_{rms})^2$$
 U_{rms} : rms kicker voltage

 ΔQ -space:

 Δ f-space:

 $\Delta p/p$ -space:

$$D_{\Delta Q} = \frac{f_0^2}{2W} \frac{(\xi Q)^2}{\beta^2 (pc)^2} (eU_{rms})^2 \qquad D_{\Delta f} = \frac{f_0^2}{2W} \frac{(\eta n f_0)^2}{\beta^2 (pc)^2} (eU_{rms})^2 \qquad D_{\Delta p/p_0} = \frac{f_0^2}{2W} \frac{(eU_{rms})^2}{\beta^2 (nc)^2}$$

$$D_{\Delta f} = \frac{f_0^2}{2W} \frac{(\eta \, n f_0)^2}{\beta^2 (pc)^2} (e U_{rms})$$

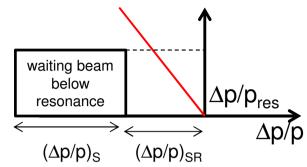
$$D_{\Delta p/p_0} = \frac{f_0^2}{2W} \frac{(eU_{rms})^2}{\beta^2 (pc)^2}$$

Power Consumption (2)

Extraction duration (spill time): T_S

wanted

$$\Delta t_{diffusion} << T_S$$



$$\langle v \rangle \approx \frac{D_{\Delta p/p}}{\left(\Delta p/p\right)_{SR} + \left(\Delta p/p\right)_{S}}$$

$$\langle v \rangle \approx \frac{D_{\Delta p/p}}{\left(\Delta p/p\right)_{SR} + \left(\Delta p/p\right)_{S}}$$
 extraction speed: $v_0 = \frac{\left(\Delta p/p\right)_{S}}{T_{S}}$

$$D_{\Delta p/p} = \frac{d \left(\Delta p/p\right)^2}{2 \Delta t_{diffusion}} = \frac{\left\{\left(\Delta p/p\right)_{SR} + \left(\Delta p/p\right)_{S}\right\}^2}{2 \Delta t_{diffusion}}$$
 allows to determine the required voltage or power

Example: COSY at 2.6 GeV/c ($f_0 = 1.538 \text{ MHz } \beta = 0.94$) $\frac{(\Delta p/p)_{SR} = 5 \cdot 10^{-4}}{(\Delta p/p)_{S} = 1.5 \cdot 10^{-3}}$ after shaping

$$(\Delta p/p)_{SR} = 5 \cdot 10^{-4}$$

 $(\Delta p/p)_{S} = 1.5 \cdot 10^{-3}$ after shaping

$$T_S = 10 \text{ s}$$

 $\Delta t_{diffusion} = 1 \text{ s}$
 $W = 1 \text{ kHz}$

$$D_{\Delta p/p} = 2 \cdot 10^{-6} \, \text{s}^{-1}$$

yields

$$U_{rms} = 100V$$

$$P = 200W \text{ at } 50\Omega$$

$$S = 0.2W/Hz$$

$$\langle v \rangle = 10^{-3} \, \text{s}^{-1}$$

 $v_0 = 1.5 \cdot 10^{-4} \, \text{s}^{-1}$

Principle of Third Order Resonance Extraction

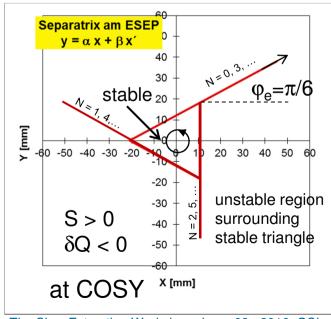
- transverse aspects -

Extraction Principle

11/3 – order resonance extraction excited by sextupoles

Sextupolar perturbation in the plane of extraction (horizontal) by single sextupole, thin lens

Normalized phase space for single sextupole:



The Slow Extraction Workshop, June 03, 2016, GSI

$$x^2 + (\alpha x + \beta x')^2 = \beta \varepsilon$$

Normalized phase space (\tilde{x}, \tilde{y}) $\tilde{y} = \sqrt{\frac{\beta_{ES}}{\beta}} x$ $\tilde{y} = \sqrt{\frac{\beta_{ES}}{\beta}} (\alpha x + \beta x')$

Beam phase space area $A = \pi \cdot \mathcal{E}$ Beam emittance ε Distance to the resonance Q_{res} $\delta Q = Q - Q_{res}$

Normalized sextupole strength $^{\star)}$

$$S = \frac{k' \ell}{2} \frac{\beta(s)^{3/2}}{\sqrt{\beta_{ES}}} \left[\frac{1}{m} \right]$$

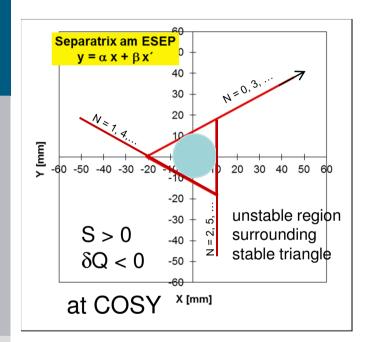
Area of stable triangle:

$$F = 3\sqrt{3} \left(\frac{4\pi \,\delta Q}{S} \right)^2 \quad \left[m^2 \right]$$

$$k' = -\frac{B''}{B\rho} \quad \left[\frac{1}{m^3}\right]$$

betratron function at ESEP $\,eta_{\scriptscriptstyle ES}$ betratron function along ring $\beta(s)$

Extraction Principle (2)



- Increase the tune of the waiting beam to move the beam into the resonance
- Exactly on resonance $\delta Q = 0$

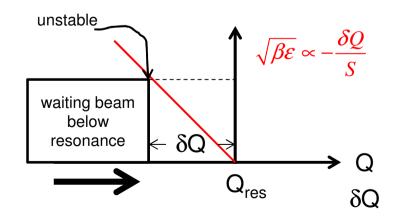
Fix points:

$$x = -\frac{4\pi \,\delta Q}{S} \qquad y = \pm \sqrt{3} \,\frac{4\pi \,\delta Q}{S}$$
$$x = \frac{8\pi \,\delta Q}{S} \qquad y = 0$$

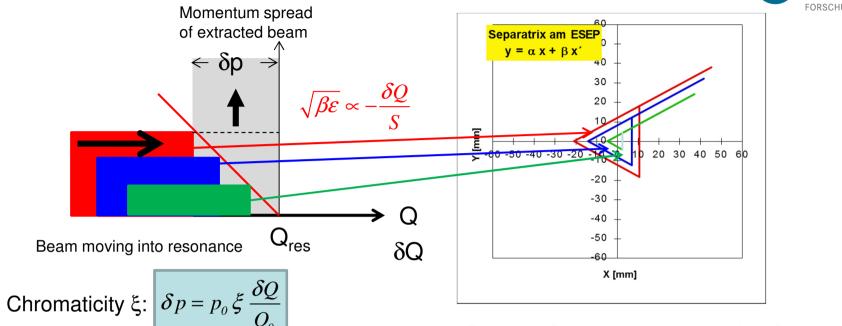
Distance to the resonance
$$Q_{res}$$

$$\delta Q = -\frac{S}{4\sqrt{3\pi\sqrt{3}}} \cdot \sqrt{\beta \varepsilon}$$

Emittance that touches the separatrix: ε

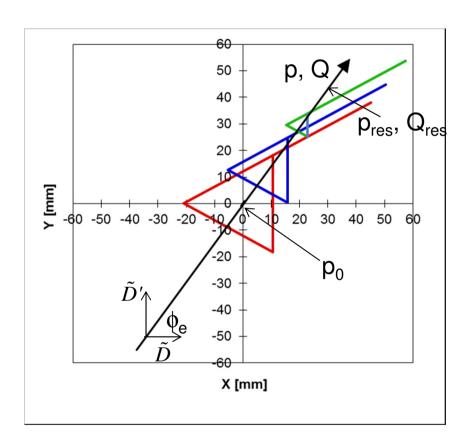


Position D and angle dispersion D' zero



- Increase the tune of the waiting stack to move the beam into the resonance
- Particles with different momenta are extracted on different separatrices
 ⇒ angle variation! ⇒ position variation at MSEP
- Position of separatrix depends on momentum spread if there is dispersion D and D' at the ESEP

At COSY: Position D and angle dispersion D' **non-zero** at ESEP and MSEP:



COSY: at ESEP D > 0 and D' > 0

*) W. Hardt, "Ultraslow Extraction out of LEAR", PS/DL/LEAR Note 81-6

Positive chromaticity ξ

$$\tilde{D} = D$$

$$\tilde{D}' = (\alpha D + \beta D')$$

$$p_{res} = p_0 (1 + \frac{1}{\xi} \frac{Q_{res} - Q_0}{Q_0}) > p_0$$
 at COSY

 Hardt condition to align separatrices of different momenta:

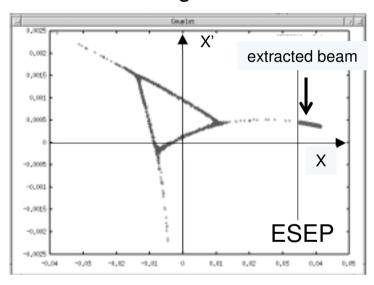
$$\xi_h = \frac{S}{4\pi Q_h} \left| \tilde{D} \right| \sin(\phi_e - \phi_e)$$

Better for Hardt condition*):

D < 0 and D' > 0

Emittance of Extracted Beam

Particle tracking*)



- *) Figure taken from **Marco Pullia, PhD Thesis, 1999**:
- "Dynamics of slow extraction and its influence on transfer lines design", http://spazioweb.inwind.it/mgp_homepage/

- The horizontal emittance of the extracted beam becomes very small.
- A first order estimate follows with Liouville's theorem:

$$\varepsilon_{ex} = \varepsilon_h \frac{\left(\Delta p/p\right)_{ring}}{\left(\Delta p/p\right)_{ex}} \cdot \frac{T_0}{T_S}$$

T₀: revolution period

T_S: extraction duration (spill time)

ring: ring

ex: quantities of extracted beam

The **vertical emittance** of the extracted and circulating beam are the same.

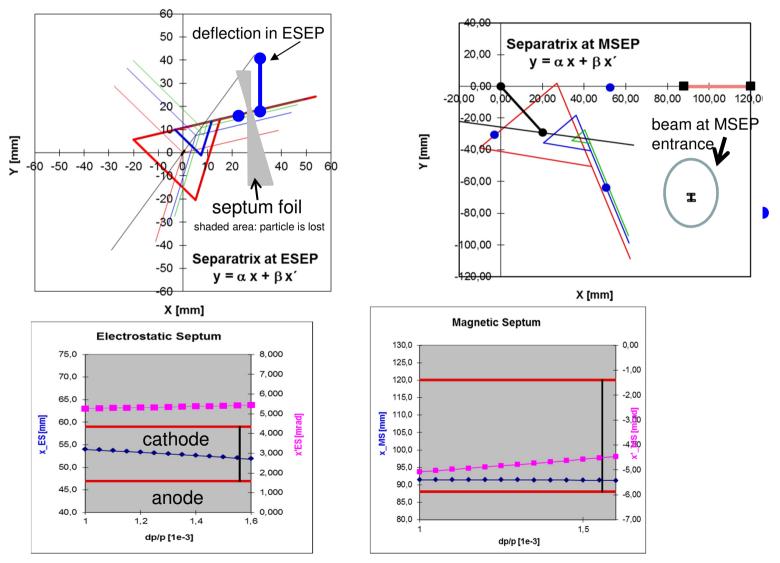
Example Beam Optics for Extraction at 1.9 GeV/c

ESEP		
D	5.8	m
D'	1.1	
beta	4.5	m
alfa	0.6	

MSEP		
D	14.6	m
D'	0.03	
beta	10.4	m
alfa	-0.2	

Phase advance	86	degrees
Orbit bump	20	mm
Deflection	5.5	mrad
Position ESEP	47	mm
Gap	12	mm
Separatrix angle	14	degrees
Sextupole strength S	20	m ⁻¹
Chromaticity ξ	2.9	

 Hardt condition: all particles leave on the same separatrix branch and jump into the septum without losses.



The Slow Extraction Workshop, June 03, 2016, GSI

Hans Stockhorst

Effective Sextupole

N sextupoles with strength S_n located at phase μ_n add up to an *effective sextupole* with magnitude S and phase μ_S according to^{*)}

$$Se^{i3\mu_S} = \sum_{n=1}^N S_n e^{i3\mu_n}$$

where for a single sextupole

$$S_{n} = \frac{k_{n}^{'} \ell_{n}}{2} \frac{\beta_{n}^{3/2}}{\sqrt{\beta_{ES}}} \qquad k_{n}^{'} = -\frac{B_{n}^{''}}{B\rho}$$

$$k_{n}^{'} = -\frac{B_{n}^{''}}{B\rho}$$

Example **MXG**: Two sextupoles with **one** power supply

$$\mu_2 = \mu_1 + \frac{Q}{2} \cdot 2\pi$$

$$\beta_1 = \beta_2$$
 $\ell_1 = \ell_2$

on resonance results in S = 0contribution *only* to chromaticity

^{*)} W. Hardt, "Ultraslow Extraction out of LEAR", PS/DL/LEAR Note 81-6

Calculation of Effective Sextupole

Wanted at the location of the ESEP

Effective sextupole:

- magnitude S
- angle of outgoing separatrix φ_e

$$\varphi_e = \frac{\pi}{6} + \langle \mu_S - \mu_e \rangle$$
 $\langle ... \rangle = smallest value mod $\frac{2\pi}{6}$$

 μ_e : betatron phase at ESEP μ_S : betatron phase effective sextupole

With eight sextupoles in the telescopic straight sections of COSY:

$$Se^{i3\mu_S} = \sum_{n=1}^8 S_n e^{i3\mu_n}$$

Equation can be approximately solved: Single Value Decomposition