

Westfälische Wilhelms-Universität Münster

Johannes Ullmann for the LIBELLE collaboration

Recent results from the hyperfine spectroscopy experiment at the ESR

I. Ground-state hyperfine structure A QED-testing toolkit

- II. Experimental setup at GSI Collinear in-ring laser spectroscopy
- III. Results of 2014 beamtime Hydrogen- and lithium-like Bismuth

I. Ground-state hyperfine structure A QED-testing toolkit

- II. Experimental setup at GSI Collinear in-ring laser spectroscopy
- III. Results of 2014 beamtime Hydrogen- and lithium-like Bismuth

Testing QED

"Quantum Electrodynamics (QED) is the *most precisely tested theory* in physics..."

Weak field vs. strong field

Courtesy of V. Shabaev

SDHERe

Probing the nuclear magnetic field

Hyperfine splitting in hydrogen-like ions

17.09.2016 - SPARC Workshop 2016

Motivation

Nuclear charge, Z

Bohr, PR 77, 94 (1950)

Testing QED in the HFS

 $f(\alpha Z) = \frac{\varepsilon^{(2s)}}{\varepsilon^{(1s)}}$ $f_{int}(\alpha Z) = \frac{\varepsilon^{(int)}}{\varepsilon^{(2s)}}$ ε – BW-correction

$$\xi = f(\alpha Z) \frac{\Delta E_{\text{Dirac}}^{2s} - f_{\text{int}}(\alpha Z) \Delta E_{\text{int}}}{\Delta E_{\text{Dirac}}^{1s}} = 0.16886, \quad \text{for } Z = 83$$

chosen to cancel Bohr-Weisskopf-effect

A 20 year old puzzle of finding the resonance

I. Ground-state hyperfine structure A QED-testing toolkit

- II. Experimental setup at GSI Collinear in-ring laser spectroscopy
- III. Results of 2014 beamtime Hydrogen- and lithium-like Bismuth

GSI Accelerator System

Ion Injection and Cooling

Laser Excitation

Pulse Laser system

- 00-30
- E_{pulse} up to 600 mJ (pump laser @ 532nm)
- E_{pulse} up to 150 mJ (dye laser @ 590 / 640 nm)
- repetition rate 30 Hz
- pulse length 4-7 ns
- linewidth \approx 2 GHz

Setup

Fluorescence Detection

Ion Bunching and measurement principle

Transformation to rest frame

New Equipment at the ESR Electron Cooler

In-situ measurement with 200 kV High-Voltage Divider

Accuracy $\Delta U \approx 4 V$ (2011: $\Delta U = 110 V$)

I. Ground-state hyperfine structure A QED-testing toolkit

II. Experimental setup at GSI Collinear in-ring laser spectroscopy

III. Results of 2014 beamtime Hydrogen- and lithium-like Bismuth

Resonances

H-like Bi⁸²⁺ coasting beam

Results

Li-like Bi⁸⁰⁺ bunched beam

Relative Uncertainty contributions

Electron-Beam Space Charge Contribution

Effect of bunching

23

Effect of ion current

Conclusion and outlook

The beam time crew

The LIBELLE Collaboration ...

Helmholtz Institut Jena Helmholtz Institut Mainz Imperial College London

Lithium like Bismuth Experiment with Laser Light at ESR

- Z. Andelkovic, D. Anielski, B. Botermann, M. Bussmann, C. Brandau,
- A. Dax, N. Frömmgen, W. Geithner, **Ch. Geppert**, Ch. Gorges, M. Hammen, V. Hannen, K. König, S. Kaufmann, T. Kühl, Y. Litvinov,
- M. Hannen, V. Hannen, K. Kong, S. Kaonnann, T. Koni, T. Litvinov, M. Lochmann, B. Maass, J. Meisner, T. Murböck, W. Nörtershäuser,
- **R. M. Sánchez**, St. Schmidt, M. Schmidt, M. Steck, Th. Stöhlker, R. C. Thompson, Ch. Trageser, **J. Ullmann**, **J. Vollbrecht**, A. Volotka,

Ch. Weinheimer, W. Wen, E. Will, D. Winters

Calibration at 200 kV: insufficient!

Calibration December 2014 at PTB

Commissioning at Ecooler

Most probable cause: ageing of resistors

Aftermath

Thank you for listening!

