

Silicon Microcalorimeters for X-ray Spectroscopy – Status and Perspectives

V. Andrianov^{2,4}, A. Bleile², A. Echler^{2,3}, P. Egelhof^{2,3}, S. Ilieva², C. Kilbourne⁵, <u>S.</u> <u>Kraft-Bermuth^{1,2}</u>, D. McCammon⁶, Th. Stöhlker², P. Scholz¹

¹Institut für Atom- und Molekülphysik, Justus-Liebig-Universität Gießen, Germany ²GSI Darmstadt, Darmstadt, Germany ³Institut für Physik, Johannes-Gutenberg-Universität Mainz, Germany ⁴Lomonosov Moscow State University, Moscow, Russia ⁵NASA/Goddard Space Flight Center, Greenbelt, USA ⁶University of Wisconsin, Madison, USA

Bundesministerium für Bildung und Forschung

Detection Principle of Microcalorimeters

S. Kraft-Bermuth

Microcalorimeters

I. Motivation Why Silicon Microcalorimeters?

Resistance Thermometer:

- resistance thermometer: $\Delta T \rightarrow \Delta R \rightarrow \Delta U$
 - for high sensitivity: high dR/dT
 - specially doped semiconductor (large dynamic range) or superconductor in phase transition (very high dR/dT)
- thermometer technology with the longest standing history, well established and reliable
- systematic effects different from magnetic microcalorimeters
 - two different yet comparable detector concepts
- simultanous measurements with two cryostats and two microcalorimeter arrays advantageous

Motivation

II. Silicon Microcalorimeters for X-rays

Energies 10 – 100 keV:

 \blacktriangleright T_A \leq 60 mK

Absorbers:

- superconductors for small c
- high Z material
 - Pb, Sn
 - absorber thickness:
 50 100 µm

Thermistors:

- large energy range
 - Si doped with P and B
- 36 pixel detector array
 - pixel area 2 x 0.5 mm²
- developed and fabricated by Madison / Goddard and Mainz group
- (A. Bleile, J. Meier et al., AIP Conf. Proc. 605, 2002)

S. Kraft-Bermuth

Performance of Prototype Array: Energy Spectrum

Energy spectrum obtained for a 241 Am source with an Sn absorber (0.3 mm² x 66 μ m)

energy resolution at E = 59.5 keV: $\Delta E = 60 - 65 \text{ eV}$ for Sn and Pb absorbers for comparison:

theoretical limit for a conventional semiconductor detector: $\Delta E_{FWHM} \approx 380 \text{ eV}$ (A. Bleile, J. Meier et al., AIP Conf. Proc. **605**, 2002)

S. Kraft-Bermuth

Silicon Microcalorimeters

III. First Application: The Lamb Shift Experiments at the ESR

The Lamb Shift Experiment

Au⁷⁹

Results

Two joint experiments with crystal spectrometer FOCAL

beams: ²⁰⁷Pb⁸²⁺ at 219 MeV/u

¹⁹⁷Au⁷⁸⁺ at 125 MeV/u

Doppler correction:

 $E_{emit} = E_{lab} \cdot \frac{1 - \beta \cos \Theta}{\sqrt{1 - \beta^2}}$

 \rightarrow angle Q and velocity β have to be known with high precision

Preliminary Results:

 $E(Ly-\alpha 1) = (77919 \pm 6_{stat} \pm 17_{syst}) eV$ $E(Ly-\alpha 1) = (71568 \pm 4_{stat} \pm 13_{syst}) eV$

(S. Kraft-Bermuth et al., submitted to J. Phys. B, 2015)

- So far good agreement with theory (V. Yerokhin and V. Shabaev, Journal of Physical and Chemical Reference Data 44 (2015) 033103)
- > systematic uncertainity dominated by precision of determination of Θ (9 eV)

The Lamb Shift Experiment

IV. New Detector Setup with 3 Arrays

- 1st step: test of a new, more compact design for 32 pixels
 - addition of low-energy pixels
 - separated load resistor boards
 - investigation of heat load and noise performance
 - tested in 2016 at ESR
- 2nd step: expand this design to 3 x 32 = 96 pixels
 - Parts in production
 - Assembly expected in 2017
- expand readout electronics and DAQ
 - new JFET boards based on standard PCBs: easy design and production
 - New DAQ program for 96 channels

S. Kraft-Bermuth

The New Detector Setup

Tests at ESR 2016: Uranium

- 1st campaign: lithium-like uranium U^{89+,} E = 70 MeV/amu
 - Mostly low-energy X-ray transitions below 20 keV
 - Not optimal for our detector, which is optimized for E ~ 100 keV
 - Test of new design in laboratory very short
 not optimized cryogenic setup

Tests at ESR 2016: Uranium

- Strong background from calibration sources
- Energy resolution around 400 eV @ 30 keV
- Main limitation: small signal amplitude due to bad thermal contact between detector and cryostat → currently under investigation

The New Detector Setup

Tests at ESR 2016: Xenon

- 2nd campaign: hydrogen-like xenon Xe^{53} +, E = 6 MeV/amu
 - > X-ray energies ~ 30 keV (Lyman- α lines)
 - Count rate very low due to low ion energies (beam life time)
 - Used "old" detector from Lamb Shift measurements in the new cryostat

Tests at ESR 2016: Xenon

- Calibration sources removed, separate calibrations at beginning and end of run
 - Possible due to very stable operation of cryostat (no temperature drifts)
- Energy resolution ~200 eV (same as for Lamb Shift experiments)
- Analysis still in progress

S. Kraft-Bermuth

The New Detector Setup

V. Conclusion and Perspectives

- First test of SiM-X at ESR was successful
 - cryostat operated without problems at ESR for 7 weeks
 - maintained very stable operating temperature
 - → measurements without permanent calibration possible
 - → measurements at very low event rates for Xenon
- Performance of old "Lamb Shift" detector array in new cryostat:
 <u>\[\lambda E \] ~ 200 eV for 10</u>
 <u>pixels</u> (comparable to Lamb Shift measurements)

Perspectives

- Performance of new detector setup not yet comparable
 - cryogenic setup needs to be optimized
 - investigation in progress
- For larger array with 96 pixels
 - TDR approved end of last year
 - All parts are ready or in production
 - Assembly expected beginning of 2017
 - Ready to use in 2018 for experiments

S. Kraft-Bermuth

Special Thanks to

- P. Scholz (Ph.D. student) and A. Echler (PostDoc)
- T. Gassner, P.-M. Hillebrand, J. Glorius and Y. Litvinov for the organization before and during the experiment
- all ESR group and GSI accelerator crew for excellent beam conditions
- our co-experimenters for the very good cooperation

Thank you for your attention!