Gas-phase molecular astrophysics and storage-ring collision measurements

Andreas Wolf Max-Planck-Institut für Kernphysik, Heidelberg, Germany

> SPARC meeting, Krakow, Poland 19 September 2016

Ion chemistry Storage ring measurements Some results from the TSR

Star formation periods of the Universe

Molecular processes

The first molecules

The primordial "soup": H⁺, He⁺⁺, Li⁺⁺⁺, e⁻

Cooling down into the 10-30 K range \rightarrow Protostars

Recombination in the Early Universe Atomic recombination

 $He^{++} + e^{-} \rightarrow He^{+} + hv$ $He^{+} + e^{-} \rightarrow He^{-} + hv$

The first molecules

The primordial "soup": H⁺, He⁺⁺, Li⁺⁺⁺, e⁻

Cooling down into the 10-30 K range \rightarrow Protostars

Atomic recombination **Recombination** $He^{++} + e^- \rightarrow He^+ + hv$ in the Early Universe $He^+ + e^- \rightarrow He + hv$ The first molecule $H^+ + e^- \rightarrow H + hv$ $E_v = hv$ He + H⁺ \rightarrow HeH⁺ + hv ~ 2 eV $HeH^+ + H \rightarrow H_2^+ + He$ $H_2^+ + H \rightarrow H_2^- + H^+$

The first molecules

The primordial "soup": H⁺, He⁺⁺, Li⁺⁺⁺, e⁻

Cooling down into the 10-30 K range \rightarrow Protostars

Atomic recombination **Recombination** $He^{++} + e^- \rightarrow He^+ + hv$ in the Early Universe $He^+ + e^- \rightarrow He + hv$ The first molecule $H^+ + e^- \rightarrow H + hv$ $E_v = hv$ He + H⁺ \rightarrow HeH⁺ + hv ~ 2 eV $HeH^+ + H \rightarrow H_2^+ + He$ $HeH^+ + e^- \rightarrow He + H^*$ $H_2^+ + H \rightarrow H_2^- + H^+$ $\blacktriangleright H_{2}^{+} + e^{-} \rightarrow H + H^{*}$ **Dissociative recombination** Destruction of molecules by capture of free electrons

Interstellar molecular clouds

lon chemistry density ~10⁴ cm⁻³ temperature ~10 K

Star forming regions

NGC 3576-86

T.A. Rector U. of Alaska Anchorage T. Abbott and NOAO/AURA/NSF

Interstellar molecular clouds

lon chemistry density ~10⁴ cm⁻³ temperature ~10 K

Star forming regions

Milky Way visible Cerro Tololo S. Kohle

www.allthesky.com/nebulae/mwco.html T. Credner, S. Kohle / Astronomical Institutes (Argelander Institute), Univ. Bonn

Interstellar molecular clouds

lon chemistry density ~10⁴ cm⁻³ temperature ~10 K

Star forming regions

Milky Way visible Cerro Tololo S. Kohle

> CO radio line T. Dame Harvard Smithsonian

www.allthesky.com/nebulae/mwco.html T. Credner, S. Kohle / Astronomical Institutes (Argelander Institute), Univ. Bonn

Interstellar ion chemistry

Reaction chains in interstellar clouds

- >190 observed interstellar molecules
- Heavy species: CH₃CH₂OH, glycoaldehyde, C₆H⁻, PAH...

ON2 Star forming region ("Chicken" Nebula) Infrared

> UKIRT Mauna Kea Chris Davis (JAC)

Interstellar ion chemistry

Reaction chains in interstellar clouds

- >190 observed interstellar molecules
- Heavy species: CH₃CH₂OH, glycoaldehyde, C₆H⁻, PAH...

- lons: CH^+ CO^+ CF^+ H_3O^+ HCO^+, COH^+ $HCNH^+$ H_2COH^+ $NCCNH^+$ SH^+ C_6H^- ...

H,

Molecules cool the star-forming regions Observed by infrared and radio spectroscopy

ON2 Star forming region ("Chicken" Nebula) Infrared

> UKIRT Mauna Kea Chris Davis (JAC)

Chemistry in molecular cloudsAfter first star explosions : O, C, Fe, ... H_2 $T \sim 10 \text{ K}$

Dissociative recombination

Electron capture resonance

Many resonances by electronic, vibrational or rotational excitation

Electron capture and fragmentation

Experiments: fast beam fragmentation measurements

- Counting
- Momentum measurement (time + position)
- Coincidence measurements

- Fragment mass identification
 - Fragments keep (approx.) the beam velocity **V**_i
 - → Laboratory kinetic energy of fragment *f*:

 $E_{f} = \frac{1}{2} M_{f} V_{i}^{2}$

Storage ring merged beams experiments Max-Planck-Institut für Kernphysik 1988 to 2012 Ion storage ring **TSR Electron Molecular** beam ion beam **Neutral fragment detector**

- Store and phase-space cool molecular ion beam
- Reduce/control internal excitation of molecular ions (T_{env} = 300 K)
- Cold electrons ($T_e \sim 10$ K) vary collision energy of electrons
- Neutral fragment detection: rates

product momenta product masses

http://www.mpi-hd.mpg.de/ion-storage

Max-Rlanck-Institut für Kernphysik

Fragmentation and phase space cooling by cold e⁻ CF⁺ (31 amu) at 90 keV/amu

Max-Rlanck-Institut für Kamphysik

M. Mendes et al., Astrophys. J. Lett. 476, L8 (2012)

M. Mendes et al., Astrophys. J. Lett. 476, L8 (2012)


```
Max-Rlanck-Institut
für Kernahysik
```


Max-Planck Institute for Nuclear Physics. Heidelberg, Germany

Stored and Cooled Ions (K. Blaum)

Atomic and molecular quantum dynamics

A. W.

O. Novotný

Atomic and molecular physics

Electron target

Photocathode

H. Buhr (*) C. Krantz A. Petrignani (*) B. Jordon-Thaden (*) D. A. Orlov (*) A. Shornikov C. Domesle **D.** Bing (*) M. Mendes (*) M. Berg J. Stützel F. Grussie **Bian Yang** C. Nordhorn (*)

Stored and cooled ion instrumentation

M. Grieser TSR and accelerator **R. Repnow** R. von Hahn

www.mpi-hd.mpg.de/blaum/molecular-qd storage-rings

Univ. Stockholm W. D. Geppert

A. Müller

D. Savin

S. Schippers

Columbia Univ., NYC

O. Novotný (**)

Univ. Louvain-La-Neuve, Belgium X. Urbain

Oldřich Novotný

Collaborations

Weizmann Institute of Science Rehovot, Israel

- H. Buhr (*) O. Heber
 - D. Schwalm M. Rappaport
- Univ. Giessen, Germany
- D. Zajfman D. Shafir (*)
 - ÍAM P

Toward cryogenic ion beam experiments

