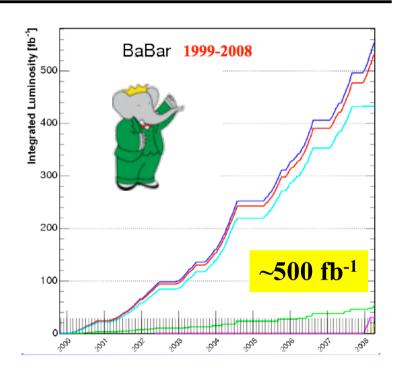

Charm Physics at a Super Flavour Factory


Achim Denig Institut für Kernphysik Johannes Gutenberg-Universität Mainz

Charm Physics on the Y(4S)

Among the B-factories' most successful achievements are two unexpected discoveries in the charm sector:

- 1. New charmonium states X, Y, Z
- 2. Charm mixing

What are the perspectives for factor ~100 higher statistics?

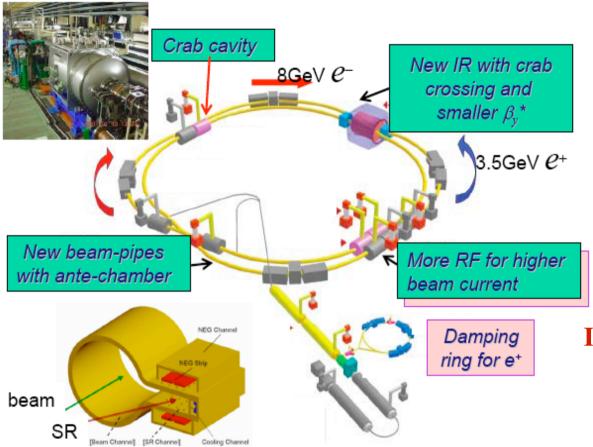
Super Flavour Factories

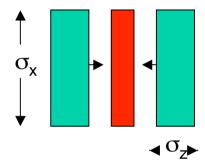
Two projects for high-luminosity asymmetric Super-B-factories

 $\mathcal{L} dt \approx O(50 \text{ ab}^{-1})$ $O(5x10^{10}) \overline{BB} \text{ pairs}$

- KEK/Japan
- more convential design
- high beam current
- high RF
- Crab crossing concept
- $\mathcal{L} = 8 \times 10^{35} \text{ cm}^{-2} \text{s}^{-1}$

- Rome/Italy
- Challenging design (ILC-like)
 - Crab waist
- vertical beam size nanometer range
- Use of PEP-II magnets
- $\mathcal{L} > 1 \times 10^{36} \text{ cm}^{-2} \text{s}^{-1}$

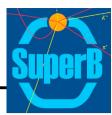

For this talk no distinction btw. the two concepts



Super KEK-B (Japan)

Head-on, short bunch

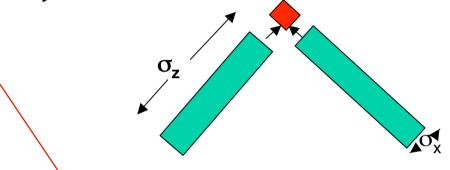
Increase of beam current

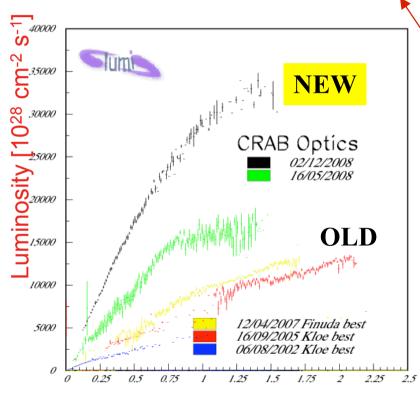

- electron cloud,
- RF shielding
- costs

Crab crossing

= head-on collission

tested at KEK-B since 2006


Super - B (Italy)



$$\mathcal{L} = f_{\text{coll.}} \times \frac{N_{e^+} N_{e^-}}{4\pi \sigma_x \sigma_y} \times R_l$$

Current [120 A²/N_{bunch}]

Bunch sizes: from $\sigma_y = 3\mu m$ down to $\sigma_{\rm v} = 40 \text{ nm}$

- Crab Waist and large Piwinsky angle to optimize beam dynamics
- Technically: Installation of sextupoles
- Successful test of principle at phi-factory **DAPNE**

Super Flavour and the rest of the World

BABAR+BELLE:

2 ab⁻¹ total after \sim 2009 at or close to $\Upsilon(4S)$

BESIII:

~ order of magnitude higher luminosity than CLEO-c; 20 fb⁻¹ at $\psi(3770)$ and 12 fb⁻¹ at $\psi(4170)$ (8 years)

• LHCb:

statistics no issue; very good perspectives for charged channels; channels with γ , ν , K_s challenging

■ PANDA:

Open charm large statistics; final systematics t.b.determined

Open Charm Physics at Super Flavour Factory

Charm Physics ↔ New Physics Search

Approach 1 (INDIRECT): Precision Charm CKM Physics

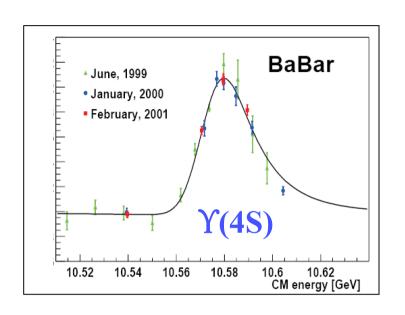
Use precision CKM to resolve 'New Physics' by overconstraining the system Charm measurements are needed for an improvement in the B-sector

Approach 2 (DIRECT): Rare Decays, Mixing, CP-Violation

- Charm decays are from 'up'-type quarks!

 Leading charm decays are not CKM suppressed unlike B and K sector FCNC dynamcis could be much stronger in 'up'-type quarks
- Charm Oscillation is Cabibbo and GIM suppressed in SM! Evidence might be a signal of 'New Physics'
- Standard model prediction for CP violation in D sector small!

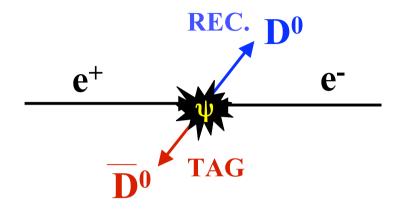
Any evidence for CP violation indicates New Physics Sensitivity in the charm sector might be large

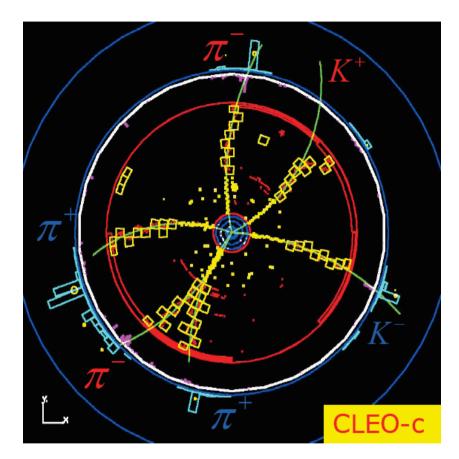

Petrov Bigi

Charm Hadron Production on the Y(4S)

High Cross Section \rightarrow High statistics: ~1.3 x 10⁶ D's / fb⁻¹

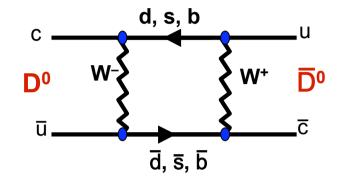
e^+e^-	\rightarrow	σ		
$bar{b}$		$1.05 \mathrm{nb}$		
$car{c}$		$1.30 \mathrm{nb}$		
$sar{s}$		$0.35 \mathrm{nb}$		
$uar{u}$		$1.39 \mathrm{nb}$		
$d\bar{d}$		$0.35 \mathrm{nb}$		


Charm Factory


Features:

- **Continuum production** at the energy of the $\Upsilon(4S)$ large
- Also a large charmonium data sample in ISR events
- B decays: allows measurement of absolute BR's
- Charm tagging through $D^{*+} \rightarrow \pi^+ D^0$, $D^{*-} \rightarrow \pi^- D^0$

Running on the ψ_{3770} Resonance


- Very High cross section $\sigma(DD) = 6.4 \text{ nb}$ but luminosity \sim factor 10 smaller
- Low multiplicities (~5-6 particles/event)
 → low background; clean signature
- Very high tagging efficiency ~22%
- Well defined quantum mechanical state $|DD\rangle = 1/\sqrt{2} (|D_1D_2\rangle |D_2D_1\rangle)$ excellent for mixing, CP-violation, ... Coherent quantum state \rightarrow later

Absolutely normalized hadronic, leptonic and semileptonic decays (tag!)

D^0 - D^0 - Mixing (Theory)

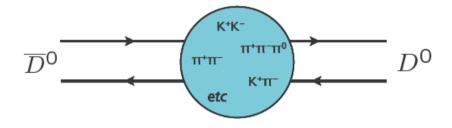
Described in the standard model via box diagram2nd order weak interaction

■ Flavour eigenstates \mathbf{D}^0 , $\mathbf{D}^0 \neq \mathbf{Mass}$ eigenstates \mathbf{D}_1 , \mathbf{D}_2 with masses \mathbf{m}_1 , \mathbf{m}_2 and life times Γ_1 , Γ_2 $|\mathbf{D}_{1,2}\rangle \sim \mathbf{p} |\mathbf{D}^0\rangle \pm \mathbf{q} |\mathbf{\overline{D}}^0\rangle$ (CP conservation: $|\mathbf{p}| = |\mathbf{q}|$)

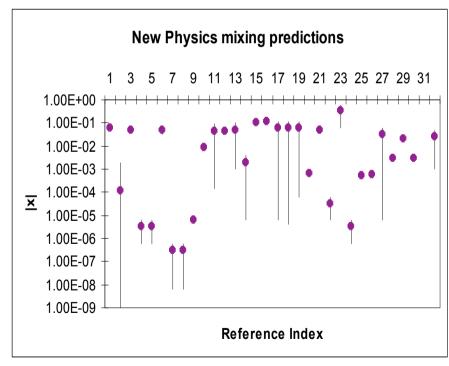
■ Introduce standard parametrization

$$x = \frac{m_1 - m_2}{\Gamma}$$
 $y = \frac{\Gamma_1 - \Gamma_2}{2\Gamma}$ $\Gamma = \frac{\Gamma_1 + \Gamma_2}{2}$

■ Mixing rate \sim ($x^2 + y^2$) expected to be small in the SM (reason: CKM elements and d,s,b quark masses)


D^0 - D^0 - Mixing (Theory)

■ In D⁰-D⁰-mixing actually the long-distance physics dominates the dynamics:


$$D^0 \rightarrow \pi^+\pi^- / K^+K^- \rightarrow \overline{D^0}$$

- Predictions for long-distance effect: $x, y < 10^{-3} \dots 10^{-2}$!
- Box diagram sensitive to
 New Physics
 |x|>>|y| not any more clear
 signature for New Physics!

Petrov

Alexey Petrov

State of the Art Charm 2009

Cartaro Staric Naik di Canto

Mixing measurements

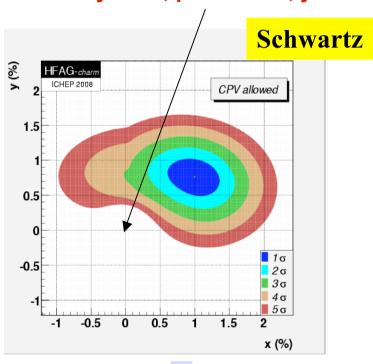
$$- D^0 \rightarrow K^+K^-, \pi^+\pi^-$$

$$- D^0 \rightarrow K^+ \pi^-$$

$$- D^0 \rightarrow K^{(*)} \cdot 1^+ \gamma$$

$$- D^0 \rightarrow K^+ \pi^- \pi^0$$

$$- D^0 \rightarrow K_s \pi^+ \pi^-$$


$$- D^0 \rightarrow K_s K^+ K^-$$

Quantum Correlations

No-mixing point excluded at ~10σ $x \approx y \approx 1\%$; precision x, $y \approx 0.3\%$

Methods

- Lifetime difference measurements ($D^0 \rightarrow h^+h^-$)
- Wrong sign measurement ($D^0 \rightarrow K\pi$)
- Dalitz plot analyses (>2 body modes)

Mixing: Expectations for Super B

Estimated from BABAR / BELLE experiences

Numbers from Super-B CDR

Exp. sensitivities	$y_{CP}(10^{-3})$	y' (10 ⁻³)	$x'^2 (10^{-4})$	cosδ
B-factories (2ab ⁻¹)	2-3	2-3	1-2	-
SuperB (75 ab ⁻¹)	0.4-0.5	0.7	0.3	_
CLEO-c (750 pb ⁻¹)	10	-	2-3	0.1-0.2
BESIII (20fb ⁻¹)	4	-	0.5-1	0.05
LHCb 10fb ⁻¹	0.5	0.9	0.64	-
	(stat only)	(stat only)	(stat only)	

Factor 2-5 improvement wrt. B-factories, LHCb?

CP Violation

- **3** types of CP violation:
 - (i) CP violation in mixing $|D_{1,2}\rangle \sim p |D^0\rangle \pm q |\overline{D^0}\rangle (|p|/|q| \neq 1)$
 - (ii) direct CP violation

→ possible in Standard Model only in SCS decays:

$$A(D \to f) \neq A(\overline{D} \to \overline{f})$$

needs a second weak amplitude (penguins)

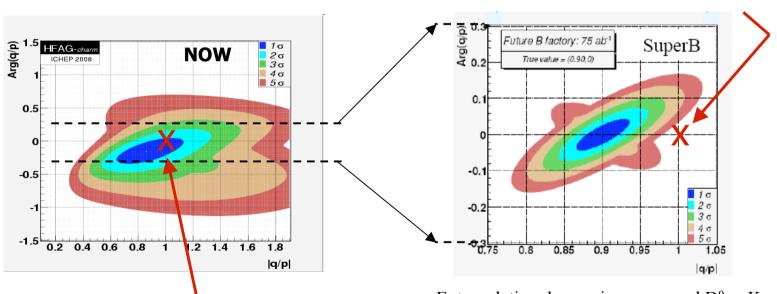
<10⁻³ asymmetries in SM

(iii) mixing induced CP violation $\phi = \arg\left(\frac{q}{p}\frac{\overline{A}_f}{A_f}\right)$ $D^o \longrightarrow \overline{D}^o \longrightarrow \overline{A}_f(\overline{D}^o \rightarrow f)$ $A_f(D^o \rightarrow f)$

■ New Physics scenarios predict CP violation up to ~1%, measurement of CP violation would indicate New Physics

CP Violation: Main Goal for SFF

Time integrated measurements


- $-D^0 \rightarrow K^+K^-, \pi^+\pi^-$
- $-D^0 \rightarrow \pi^+\pi^-\pi^0, K^+K^-\pi^0$

T odd correlations $D^0 \rightarrow K^+K^-\pi^+\pi^-$

Dalitz plot analyses

- $-D^0 \rightarrow K^+\pi^-\pi^0$
- $-D^0 \rightarrow K_S \pi^+ \pi^-, K_S K^+ K^-$

If central values persist: Will observe >> 5σ effect !!

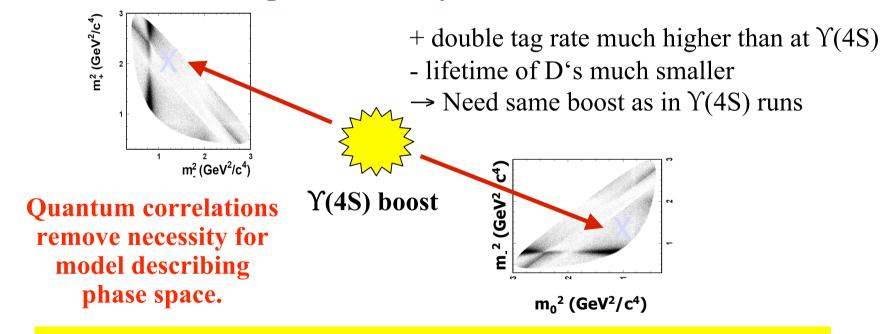
No-CPV point allowed at 1σ

Extrapolation done using measured $D^0 \rightarrow K\pi$ and $D^0 \rightarrow K_S\pi\pi$ channels assuming that systematic error scales with statistics

Indirect CP Violation

Compare (x,y) for D⁰ and D⁰

Flavour-tagged semileptonic asymmetry:


- Can measure a_{SL} at Y(4S) with D^* tagging:
 - Large backgrounds
 - We estimate 13 500 events / yr. $\rightarrow \delta a = 1\%$ per year
- Measure it at $\psi(3770)$
 - Much cleaner reconstruction
 - Can include WS hadrons since no DCS thanks to quantum correlation
 - Estimate 1 600 events per month $\rightarrow \delta a = 1\%$ in 4 months

Bigi

Precise measurement restricts parameter space in LHT models

Exploit Quantum Correlations at ψ_{3770} ?

- Strong phase δ_{Kp} needed for $\sigma(\cos\delta_{K\pi}) \sim \pm (0.01 \rightarrow 0.02)$ combining mixing events: $\sigma(\delta_{K\pi}) \sim \pm (1 \rightarrow 2)^{\circ}$
 - CLEO c: $\cos \delta_{K\pi} = 1.03^{+0.31}_{-0.17} \pm 0.06$
- Measure relative phases bin-by-bin in DP:

Impact of low-energy run needs to be understood better

Conclusions

Conclusions

- Super Flavour Factory is a challenge in accelerator technology
 - factor 100 luminosity increase
 - exciting new concepts for e⁺e⁻ collission
- Discovery potential for New Physics whether or whether not Super Flavour can run in the charm threshold region
- Final systematics need to be determined in feasibility studies
 - CP asymmetries ~1% need excellent understanding of detector
- Many other charm related issues to be studied
 - semileptonic decays
 - GIM suppressed rare decays $D^0 \rightarrow \mu^+\mu^-$, $D^0 \rightarrow X l^+l^-$
- Charm(onium) spectroscopy aspects will remain interesting, competition from PANDA@FAIR