Charm 2009, May 20-22 Leimen, Germany

ISR e⁺e⁻ to charm

Galina Pakhlova ITEP, Belle collaboration Two main reasons to measure e⁺e⁻ annihilation to open charm

- To shed light on the nature of the charmoniumlike "1⁻⁻ family" with masses above open charm threshold
- To provide model independent information on the parameters of the J^{PC} = 1⁻⁻ charmonium states spectrum above open charm threshold

Three main reasons to use ISR at B factories

- Quantum numbers of final states are fixed J^{PC} = 1⁻⁻
- **Continuous ISR spectrum:**
 - access to the whole \sqrt{s} interval
 - α_{em} suppression compensated by huge luminosity
 - comparable sensitivity to <u>energy scan</u> (CLEOc, BES)

Charmoniumlike 1⁻⁻ family

Charm 2009

Charm 2009 charmonium

Y states vs inclusive cross section $e^+e^- \rightarrow hadrons$

Peak positions for M(J/\psi\pi\pi) & M(\psi(2S)\pi\pi) significantly different

Y(4260) mass corresponds to dip in inclusive cross section

Charm 2009

Problem:

Interpretations of Y states

No room for Y states among conventional 1⁻⁻ charmonium

quark model S.Godfrey and N.Isgur PRD32,189 (1985)

- $3^{3}S_{1} = \psi(4040), 2^{3}D_{1} = \psi(4160), 4^{3}S^{1} = \psi(4415)$ are measured
- masses of predicted 3³D₁ (4520), 5³S₁ (4760), 4³D₁ (4810) higher(lower) Y masses

Options

• $Y(4325) = 3^{3}D_{1}, Y(4660) = 5^{3}S_{1}$ with shifted masses

G.J Ding et al Phys.Rev.D77:014033 (2008) A.M.Badalyan et al arXiv:0805.2291

Charmonium hybrids

Zhu S.L.; Close F.E.; Kou E. and Pene O.

- The lightest hybrid is expected by LQCD around 4.2 GeV
- The dominant decays $Y(4260) \rightarrow D^{(*)}D^{(*)}\pi$, via virtual D^{**}

Hadro-charmonium

• Specific charmonium state "coated" by excited light-hadron matter

S.Dubinskiy, M.B.Voloshin, A.Gorsky

- Multiquark states
 - [cq][cq] tetraquark Maiani L., Riquer V., Piccinini F., Polosa A.D.
 - **DD**₁ or **D**^{*}**D**⁰ molecules Swanson E.; Rosner J.L., Close F.E.
- S-wave charm meson thresholds

Lui X.

Charm 2009

Charmonium states contribution to inclusive cross section $e^+e^- \rightarrow hadrons$ above open charm threshold

all possible two body decays of $\psi(3770)$, $\psi(4040)$, $\psi(4160)$, $\psi(4415)$ are included Significant effect of interference : model dependent!!!

To reduce model dependence

need to measure exclusive cross sections to open charm final states

Charm 2009

- Full reconstruction of hadronic part
- ISR photon detection is not required
 - but used if it is in the detector acceptance
- Translate measured DD mass spectrum to cross section

via ISR with partial reconstruction

DD^{*} & **D**^{*}**D**^{*}

- D^{*}<u>partial reconstruction</u>
 - increase eff ~ 10-20 times
- Detection of ISR photon
- Translate measured mass recoil against $\gamma_{ISR} \equiv D^{(*)}D^*$ mass spectrum to cross section

Charm 2009

Exclusive e⁺e⁻ \rightarrow **D**^(*)**D**^{*}**cross-sections**

Backgrounds are reliably estimated from the data Systematic errors ≈ statistical errors

Y(4260) signal DD* : hint, but not significant D*D*: clear dip (similar to inclusive **R**)

Charm 2009

Three body final states

$D^0\,D^{(*)-}\,\pi^+$

- Full reconstruction of hadronic part
- ISR photon detection is not required
 - but used if it is in the detector acceptance
- Translate measured $DD^{(*)}\pi$ mass spectrum to cross section

Charm 2009

Resonant structure in $\psi(4415) \rightarrow D^0 D^- \pi^+$

 $\sigma(e^+e^- \rightarrow \psi(4415)) \times Br(\psi(4415) \rightarrow DD^*_2(2460)) \times Br(D^*_2(2460) \rightarrow D\pi) = (0.74 \pm 0.17 \pm 0.07) nb$

 $Br(\psi(4415) \rightarrow D(D\pi)_{non D2(2460)})/Br(\psi(4415) \rightarrow DD^{*}_{2}(2460)) < 0.22$

Charm 2009

- Reconstruct Λ_c^+
- Use anti-proton tag from inclusive $\Lambda_c^- \rightarrow p^- X$

 $Br(\Lambda_c^+ \rightarrow pX) = (50 \pm 16)\%$

- combinatorial background suppressed by ≈ 10
- Detect the high energy ISR photon
- Translate measured mass recoil against $\gamma_{ISR} \equiv \Lambda_c^+ \Lambda_c^-$ mass spectrum to cross section

Charm 2009

dibaryon threshold effect

• like in $B \rightarrow p\Lambda \pi$, $J/\psi \rightarrow \gamma pp$

•5³S₁ charmonium state
• in some models M (5³S₁) ~4670MeV
• Other interpretations

$e^+e^- \rightarrow \Lambda_c^+ \Lambda_c^- \gamma_{ISR}$

• no peak-like structure

Interpretations for the new X(4630)

• $X(4630) \equiv Y(4660)$? $J^{PC}=1^{}$				
State	$\mathbf{M}, \ \mathrm{MeV}/\mathbf{c^2}$	$\Gamma_{ m tot},~{ m MeV}$		
X (4630)	4634_{-7-8}^{+8+5}	$92\substack{+40+10\\-24-21}$		
$\mathbf{Y}(4660)$	$f 4664\pm 11\pm 5$	$f 48\pm15\pm3$		

Charm 2009

 \sim σ(e⁺e⁻→open charm) via ISR

Belle: Sum of all measured exclusive contributions

- Y states vs exclusive cross sections
 - **Y(4008) mass coincides with DD* peak**
 - Y(4260) mass corresponds to dip in D*D* cross-sect
- Y(4660) mass is close to $\Lambda_c^+ \Lambda_c^-$ peak
- Enhancement near 3.9 GeV in ee→DD coupled channel effect?

<u>*y*(4415) still some unaccounted-for decay</u> <u>channels</u> Charm strange final states contribution to be factor of 10 less

Searching for hybrids via their favorite decay modes

- **Full reconstruction**
- No extra tracks
- Detection of γ_{ISR} is not required
 - if γ_{ISR} is detected
 - $M(D^0D^{*-}\pi^+\gamma_{ISR})$ is required ~ Ecm

Exclusive $e^+e^- \rightarrow D^0D^{*-}\pi^+$ cross-section

Interference could increase these UL's by factors of 2–4 depending on the final state (for destructive solutions)

No evident structures: only UL's !!!

- **Baseline fit:**
 - RBW for ψ(4415) & threshold function for non-resonant contribution without interference between amplitudes

RELLE

To obtain limits on $X \rightarrow D^0 D^{*-}\pi^+$, X=Y(4260), Y(4360), Y(4660), X(4630) perform four fits each with one of the X states, ψ (4415) and non-resonant contribution

Fix masses and total widths from PDG

$$\begin{split} \sigma(e^+e^- \to \psi(4415)) \times & Br(\psi(4415) \to D^0 D^{*-}\pi^+) < 0.8 \text{ nb at } 90\% \text{ CL} \\ & Br(\psi(4415) \to D^0 D^{*-}\pi^+) < 11 \ \% \text{ at } 90\% \text{ CL} \end{split}$$

UL at 90% CL	Y(4260)	Y(4360)	Y(4660)	X(4630)
$\sigma(e^+e^- \to X) \times \mathcal{B}(X \to D^0 D^{*-} \pi^+)$ nb	0.62	0.83	0.55	0.40
$\mathcal{B}_{\rm ee} \times \mathcal{B}(X \to D^0 D^{*-} \pi^+) \times 10^{-6}$	0.76	1.08	0.81	0.59
$\mathcal{B}(X \to D^0 D^{*-} \pi^+) / \mathcal{B}(X \to \pi^+ \pi^- J/\psi)$	15			
$\mathcal{B}(X \to D^0 D^{*-} \pi^+) / \mathcal{B}(X \to \pi^+ \pi^- \psi(2S))$.11	42	

Charm 2009

Belle: Sum of all measured exclusive contributions

Six exclusive open charm final states were measured DD, DD π , DD^{*} π , D^{*}D, D^{*}D^{*}, $\Lambda_c \Lambda_c$

In conclusion

- Their sum is close to $e^+e^- \rightarrow hadrons$
- Belle & BaBar & Cleo_c cross section measurements are consistent with each other in corresponding energy ranges
- **D**^{*}**D**^{*} (main contribution)
 - complicated shape of cross section
 - clear dip at M(D*D*) ~ 4260GeV (similar to inclusive R)
- **DD**^{*} (main contribution)
 - **broad peak at threshold (shifted relative to 4040 GeV)**
- **DD**
 - complicated shape of cross section
 - broad enhancement ~ 3.9 GeV coupled channel effect?
- $DD\pi$
 - $\psi(4415)$ signal observed, dominated by $\psi(4415) \rightarrow DD_2$ (2460)
- $DD^*\pi$
 - No evidend structures observed

<u>In charm meson final states no evident peaks corresponding to</u> <u>members of charmoniumlike 1⁻⁻family are found !</u>

- $\Lambda_c \Lambda_c$
 - Enhancement at threshold, quantum numbers, mass and width are consistent with Y(4660)

Charm 2009

In conclusion for theory

All presented cross sections can be found in <u>Durham</u> <u>Data Base</u>

Please, don't use our plots and a ruler!

Theoretical efforts to describe charm components of inclusive cross-section are kindly requested!

Charm 2009