Search for Z(4430)⁻ at BaBar

Outline:

- Study $B^{-/0} \rightarrow J/\psi \pi^- K^{0/+}$ and $B^{-/0} \rightarrow \psi(2S) \pi^- K^{0/+}$
- describe $K\pi$ mass and angular structure
- search for $\psi \pi$ signal on top of $K\pi$ reflections
- results

BaBar and PEP-II

BaBar data

C. Patrignani - Genova

Charm2009 - Leimen, May 20-22, 2009

Z(4430)⁻ at Belle: the first analysis

C. Patrignani - Genova

Search for Z(4430)⁻ at BaBar

Search in four B decay modes: $B^{-/0} \rightarrow J/\psi \ \pi^- K^{0/+}$ $B^{-/0} \rightarrow \psi(2S) \ \pi^- K^{0/+}$

[in the following ψ denotes J/ ψ and $\psi(2S)$]

- subtract background (sidebands)
- correct for efficiency event by event
- describe in detail the Kπ⁻ system
 → structures in the Kπ⁻ mass and angular distributions dominate each Dalitz plot

Project each $K\pi^-$ description onto the relevant $\psi\pi^-$ mass distribution to investigate the need for Z(4430)⁻ signal above this " $K\pi^-$ background"

arXiv:0811.0564 accepted for publication in PRD

"Square" Dalitz plot

K π reflections and the Z(4430)⁻

- $m_{\psi\pi}$ peaks at high values because of the asymmetry in the $\cos\theta_{K}$ distributions
- The K^{*} regions dominate, and affect different regions of $\cos\theta_{\psi}$ for J/ ψ and $\psi(2S)$
- The K^{*} veto removes approximately half of the angular distribution at the Z(4430)⁻

$K\pi^{-}$ description: S, P and D wave intensities

Fit with S- (LASS), P-, and D-wave intensity

Mode	Events	m(K*(892)) (MeV/c2)	Г(K*(892)) (MeV)	S-wave (%)	P-wave (%)	D-wave (%)	
$B^0 \rightarrow J/\psi \pi^- K^+$	57231±561	895.5±0.4	48.9±1.0	15.7±0.8	73.5±0.7	10.8±0.5	compatib with bein
$B^{-} \rightarrow J/\psi \pi^{-} K_{S}^{0}$	20985±393	892.9±0.8	49.0±1.9	17.0±1.6	72.5±1.3	10.5±1.0	equal
$B^0 \rightarrow \psi(2S)\pi K^+$	13237±377	895.8±1.0	43.8±3.0	25.4±2.2	68.2±2.0	6.4±1.2	compatib
$B^- \rightarrow \psi(2S) \pi^- K^0_S$	5016±292	891.6±2.1	44.8±6.0	23.4±4.5	71.3±4.4	5.3±2.7	equal

It is justified to combine the K⁰_s and K⁺ modes

g

C. Patrignani - Genova

B→ ψ (K π): *S*-, *P*-, and *D*-wave moments

The expression of the angular distribution for $B \rightarrow \psi \pi K$ is complicated (see e.g. S. T'Jampens, Ph.D. Thesis, Universite Paris XI (2002), SLAC-R-838) Integrating over the ψ decay angles: 5 observables, 7 amplitudes, 6 relative phases $N = S_0^2 + P_0^2 + D_0^2 + P_{+1}^2 + P_{-1}^2 + D_{+1}^2 + D_{-1}^2$ Complete $K\pi$ amplitude analysis of DP not possible $\langle P_1^U \rangle = \frac{S_0 P_0 \cos\left(\delta_{S_0} - \delta_{P_0}\right) + 2\sqrt{\frac{2}{5} P_0 D_0 \cos\left(\delta_{P_0} - \delta_{D_0}\right)}$ without making assumptions $+\sqrt{\frac{6}{5}} \left[P_{+1} D_{+1} \cos \left(\delta_{P_{+1}} - \delta_{D_{+1}} \right) + P_{-1} D_{-1} \cos \left(\delta_{P_{-1}} - \delta_{D_{-1}} \right) \right]$ $\langle P_{2}^{U} \rangle = \sqrt{\frac{2}{5}} P_{0}^{2} + \sqrt{\frac{10}{7}} D_{0}^{2} + \sqrt{2} S_{0} D_{0} \cos\left(\delta_{S_{0}} - \delta_{D_{0}}\right) - \left|\frac{1}{\sqrt{10}} \left(P_{+1}^{2} + P_{-1}^{2}\right) + \frac{5\sqrt{10}}{28} \left(D_{+1}^{2} + D_{-1}^{2}\right)\right|$ $\langle P_{3}^{U} \rangle = 3 \sqrt{\frac{6}{35}} P_{0} D_{0} \cos \left(\delta_{P_{0}} - \delta_{D_{0}} \right) - 3 \sqrt{\frac{2}{35}} \left[P_{+1} D_{+1} \cos \left(\delta_{P_{+1}} - \delta_{D_{+1}} \right) + P_{-1} D_{-1} \cos \left(\delta_{P_{-1}} - \delta_{D_{-1}} \right) \right]$ $\langle P_4^U \rangle = \frac{3\sqrt{2}}{7} D_0^2 - \frac{2\sqrt{2}}{7} \left(D_{+1}^2 + D_{-1}^2 \right)$ For $K\pi$ scattering

C. Patrignani - Genova

Legendre polynomial moments description of $K\pi^-$ angular structure

C. Patrignani - Genova

$K\pi$ -reflection onto the $\psi\pi$ - projection

10M events generated flat in $\cos\theta_{K}$ according to the m_{K_n}- fit function

• Weight each event using Legendre moments: $w_j = 1 + \sum \langle P_i^N \rangle P_i(\cos \theta_{K_j})$

 i^{th} **normalized** moment, obtained from data by linear interpolation

Compare $\psi\pi^$ distribution in data after background subtraction and efficiency correction to what expected from $K\pi^-$ reflections

Kπ⁻ reflections reproduce data

C. Patrignani - Genova

$m_{\psi\pi}$ - mass distributions in intervals of $m_{K\pi}$

Five $K\pi^-$ intervals defined (A,B,C,D,E) by Belle K^{*} veto; **one normalization factor**

Fit for a Z(4430)⁻ signal in the $\psi\pi^-$ spectra

C. Patrignani - Genova

Fit results fixing m_z and Γ_z to Belle's values

All $K\pi^-$ mass values	BABAR preliminary				
Decay mode	Z(4430) ⁻ signal	Branching fraction (x10 ⁻⁵)	Upper limit (x10 ⁻⁵) (@95% C.L.)		
$B^{-} \rightarrow Z^{-}\overline{K}^{0}, Z^{-} \rightarrow J/\psi\pi^{-}$	-17 ± 140	-0.1 ± 0.8	< 1.5		
$B^0 \rightarrow Z^- K^+, Z^- \rightarrow J/\psi \pi^-$	-670 ± 203	-1.2 ± 0.4	< 0.4		
$B^{-} \rightarrow Z^{-} \overline{K}^{0}, Z^{-} \rightarrow \psi(2S)\pi^{-}$	148 ± 117	2.0 ± 1.7	< 4.7		
$B^0 \rightarrow Z^- K^+, Z^- \rightarrow \psi(2S)\pi^-$	415 ± 170	1.9 ± 0.8	< 3.1		

Belle: $BF(B^0 \rightarrow Z^-K^+, Z^- \rightarrow \psi(2S)\pi^-) = (4.1 \pm 1.0 \pm 1.4) \times 10^{-5}$

C. Patrignani - Genova

Effect of adding a MC Z(4430)⁻ signal

• We have searched for the Z(4430)⁻ with the full BaBar data sample in

 $B^{-/0} \rightarrow J/\psi \pi^- K^{0/+}$ and $B^{-/0} \rightarrow \psi(2S) \pi^- K^{0/+}$

- The $K\pi^-$ system can be described by S-, P-, and D-wave intensity contributions
- The $m_{\psi\pi}$ distributions can be understood as reflections of the mass and angular structure of the $K\pi^-$ system
- No significant Z(4430)⁻ signal is observed in any of the decay modes which have been studied

arXiv:0811.0564 accepted for publication in PRD

Backup slides

- $B \rightarrow J/\psi \pi^- K$ (mass & width free) \rightarrow negative, or no, BW signal is obtained
 - $B \rightarrow \psi(2S)\pi^{-}K$ (mass and width free):
 - > Shifted mass enhancement for overall $K\pi$ range:

m=4476±8 MeV/c²; Γ =32±16 MeV; signal size: 2.7 σ

> Shifted mass enhancement in the K*(892) and K*₂(1430) region:

m=4483 \pm 3 MeV/c²; Γ =17 \pm 12 MeV; signal size 2.5 σ

➤ mass enhancement with the K* veto:

m=4439 \pm 8 MeV/c²; Γ =41 \pm 33 MeV; signal size 1.9 σ

• No significant Z(4430) - signal is observed

Event selection criteria

Selection category	Criterion		
J/ψ→e ⁺ e ⁻ mass	2.95 <m(ee)<3.14 c<sup="" gev="">2</m(ee)<3.14>		
J/ψ→μ ⁺ μ ⁻ mass	$3.06 < m(\mu\mu) < 3.14 \text{ GeV/}c^2$		
	J/ψ mass constraint applied		
ψ(2S)→e ⁺ e ⁻ mass	3.44 <m(ee)<3.74 c<sup="" gev="">2</m(ee)<3.74>		
$\psi(2S) \rightarrow J/\psi \pi^+ \pi^-$	$3.655 < m(J/\psi \pi \pi) < 3.715 \text{ GeV/}c^2$		
(J/ψ→e ⁺ e ⁻) mass			
$\psi(2S) \rightarrow \mu^+ \mu^-$ mass	$3.64 < m(\mu\mu) < 3.74 \text{ GeV/}c^2$		
$\psi(2S) \rightarrow J/\psi \pi^+ \pi^-$	$3.655 < m(J/\psi \pi \pi) < 3.715 \text{ GeV/}c^2$		
$(J/\psi \rightarrow \mu^+\mu^-)$ mass			
	$\psi(2S)$ mass constraint applied		
K _s →π ⁺ π ⁻ mass	$472 < m(\pi\pi) < 522 \text{ MeV/}c^2$		
Flight length significance	Flight distance $> +3\sigma$		
m _{ES}	$5.272 < m_{ES} < 5.286 \text{ GeV/}c^2$		
	$ \Delta E < 20 \text{ MeV}$		
	Side-band 30< \Delta E <50 MeV		

ΔE and $m_{_{\rm ES}}$ distributions

Mass resolution and efficiency

- The <u>average</u> efficiency is calculated separately for the different ψ decay modes (two modes for J/ ψ and four for ψ (2S))
- The average efficiency is slightly higher for $\mu^+\mu^-$ than e^+e^-

- Mass resolution is ~7 (4) MeV/c2 in the decay modes with J/ψ (ψ (2S)) at m_Z
- same mass resolution at same Q-value

Efficiency vs K/ π momentum

C. Patrignani - Genova

$K\pi$ mass distribution

- The distributions are efficiency-corrected and sideband subtracted
- Clear K^{*}(892) peaks are observed in all decay modes
- Clear $K_{2}^{*}(1430)$ peaks are obtained in the decay modes with J/ ψ and consistent $K_{2}^{*}(1430)$ enhancements are obtained in the decay modes with $\psi(2S)$

Efficiency correction: $K\pi$ mass dependence of Legendre polynomial coefficients

C. Patrignani - Genova

24

$\cos\theta_{\pi}$ distributions (K* veto)

C. Patrignani - Genova

Unnormalized 5th and 6th moments (J/ ψ)

C. Patrignani - Genova

Normalized moments

Average efficiency as a function of $\psi\pi$ mass

C. Patrignani - Genova

Residuals in $m_{K\pi}$ intervals

C. Patrignani - Genova

BaBar/Belle comparison

- Both Belle and *BABAR* data are re-binned (to calculate χ^2) and side-band subtracted
- The *BABAR* data are normalized (*1.18) to the Belle sample; Luminosity ratio is 1.46 The data distributions are statistically consistent ($\chi^2=54.7/58$)

C. Patrignani - Genova