Recent Results from Dalitz Plot Analyses in D/Ds Decays.

Antimo Palano INFN and University of Bari from the BaBar Collaboration

Charm 2009, May 20-22, 2009 Leimen, Germany

□ Summary.

- Dalitz plot analysis of three-body charm decays;
- Analysis methods;
- Search for CP violation;
- Conclusions.

Dalitz plot analysis.

Picture is from $K^- p \to \overline{K}^0 \pi^- p$ at 11 GeV/c, LASS.

- Lorentz invariant, and phase space flat.
- Allows resonance parameters and spin to be well measured.
- Starts from a well-defined spin 0 particle, expect intermediate resonances to have $J \leq 2$ because of limited two-body-mass range, and centrifugal barrier suppression; however, parity and isotopic spin are not conserved in the decay.

Richard Dalitz, 1925-2006

- Charm Dalitz plots have many uses:
 - New measurements in light meson spectroscopy.
 - Key role in CKM- γ measurement.
 - Fundamental information needed to understand heavy mesons decay.
 - Mixing and CP violation studies.
- Can be extended to 4-(and more) body decays.

Dalitz plot analysis.

□ Dalitz plot analysis is an invaluable procedure exploited in many charm (and B) decay analyses. (D. Asner, hep-ex/0410014)

 \square K inematics of 3-body decay $D \to A, B, C$ fully described by 2 parameters.

Dalitz Plot Analysis.

□ Analyses are usually performed by means of unbinned maximum likelihood fits.
 □ The likelihood is parametrized as:

$$L = x |A_1 + c_2 A_2 e^{i\phi_2} + c_3 A_3 e^{i\phi_3} + \dots |^2 + (1-x)B$$

where A_i and ϕ_i are the amplitudes and phase for contribution *i*, all measured with respect to a reference amplitude.

 $\Box x$ is the signal fraction and B is the incoherent background.

 \Box Amplitudes written as:

$$A_i = BW_i \times \Omega_i$$

where BW_i is a Relativistic Breit-Wigner and Ω_i describes its decay angular dependence. \Box Standard procedure is to use the helicity formalism.

 \square Zemach tensors can also be used.

 \square All amplitudes normalized on the Dalitz plot.

□ Isobar model: all intermediate resonances described by Breit-Wigner. Introduce

known or unknown resonances until a good fit is obtained.

The problem of the scalar mesons.

□ The study of B decays also deals with the problem of scalar mesons. □ Too many scalar mesons below 2. GeV with uncertain parameters.

I = 1/2	I = 1	I = 0
k(800)		σ
	$a_0(980)$	$f_0(980)$
		$f_0(1370)$
$K_0^*(1430)$	$a_0(1490)$	$f_0(1500)$
		$f_0(1700)$
$K_0^*(1950)$		

- \Box The interpretation of broad structures as resonances not clear.
- \square Several states need to be described by a coupled channel formalism.
- □ Broad overlapping resonances cannot be described by standard Breit-Wigner's.
- \Box Four different approaches.
 - Isobar model;
 - K-matrix formalism;
 - Model Independent Partial Wave Analysis;
 - Direct Partial Wave Analysis.

K-matrix formalism.

 \Box The K-Matrix formalism overcomes the main limitation of the BW model to parameterize large and overlapping S-wave $\pi\pi$ resonances: violation of unitarity.

I.J.R. Aitchison, Nucl. Phys. A189, 417 (1972)

 $\Box \text{ The PDF is written as:}$ $\mathcal{A}_{D}(\mathbf{m}) = F_{1}(s) + \sum_{r \neq (\pi\pi)_{L=0}} a_{r} e^{i\phi_{r}} \mathcal{A}_{r}(\mathbf{m}) + a_{\mathrm{NR}} e^{i\phi_{\mathrm{NR}}}$ where $F_{1}(s)$ is the K-matrix contribution of the $\pi\pi$ S-wave $F_{1}(s) = \sum_{j} \left[I - iK(s)\rho(s) \right]_{1j}^{-1} P_{j}(s)$

 \Box P_j is the initial production vector. 5 channels: $l=\pi\pi$, $2=K\bar{K}$, $3=\pi\pi\pi\pi$, $4=\eta\eta$, $5=\eta\eta'$ V.V. Anisovitch, A.V Sarantev Eur. Phys. Jour. A16, 229 (2003)

 \square Method physically correct. However it is based on results

from past experiments.

Study of $D^0 \to \overline{K}{}^0 \pi^+ \pi^-$.

□ Aim is to measure γ in $B \to D\overline{K}$ decays. □ Isobar model. Dalitz plot analysis from Belle requires two more " σ " resonances. $(\chi^2/ndf = 2.72)$

arXiv:0803.3375, Phys.Rev.D73:112009,2006

Intermediate state	Amplitude	Phase $(^{\circ})$	Fit fraction
$K^0_S \sigma_1 (M_{\sigma_1} = 519 \pm 6 \text{ MeV}, \Gamma_{\sigma_1} = 454 \pm 12 \text{ MeV})$	1.43 ± 0.07	212 ± 3	9.8%
$K_{S}^{\tilde{0}} ho^{0}$	1.0 (fixed)	0 (fixed)	21.6%
$K_{S}^{0}f_{0}(980)$	0.365 ± 0.006	201.9 ± 1.9	4.9%
$K_{S}^{0}\sigma_{2}~(M_{\sigma_{2}}=1050\pm 8~{ m MeV},~\Gamma_{\sigma_{2}}=101\pm 7~{ m MeV})$	0.23 ± 0.02	237 ± 11	0.6%
$K_{S}^{0}f_{0}(1370)$	1.44 ± 0.10	82 ± 6	1.1%
$K^{*}(892)^{+}\pi^{-}$	1.644 ± 0.010	132.1 ± 0.5	61.2%
$K_0^*(1430)^+\pi^-$	2.15 ± 0.04	353.6 ± 1.2	7.4%
$K_{2}^{*}(1430)^{+}\pi^{-}$	0.88 ± 0.03	318.7 ± 1.9	2.2%
non-resonant	3.0 ± 0.3	164 ± 5	9.7%

Study of
$$D^0 \to \overline{K}{}^0 \pi^+ \pi^-$$
.

□ BaBar makes use of the K-matrix formalism for the $\pi\pi$ S-wave (fraction=11.9 ± 2.6%).Phys.Rev.D78:034023,2008 □ 487 000 events $\chi^2/NDF = 1.11$.

□ Using the Belle isobar model: $\chi^2/NDF = 1.11$.

 \Box Better fit and no need to introduce new scalar resonances.

Study of
$$D^+ \to \pi^+ \pi^+ \pi^-$$
.

□ Isobar model from E791 (≈ 1200 events) requires the presence of a broad scalar $\sigma(500)$ resonance.Phys. Rev. Lett. 86, 770 (2001) □ Fit without and with the $\sigma(500)$.

 $\Box \sigma(500)$ fraction: $46.3 \pm 9 \pm 2.1\%$ $\Box \sigma(500)$ parameters:

 $m = 478^{+24}_{-23}, \qquad \Gamma = 324^{+42}_{-40} \qquad MeV$

□ In some models the $\sigma(500)$ is a candidate for being a scalar glueball. □ In others, the $\sigma(500)$ should not be interpreted as a $q\bar{q}$ state, but results from a weakly attractive potential between the bosons.(PRL 96, 132001 (2006)).

 \Box Recent analysis from CLEO (≈ 2600 events).(Phys.Rev.D76:012001,2007)

 $\Box \sigma$ pole: (466±18, -223±28) MeV

K-matrix analysis of $D^+/D_s^+ \to \pi^+\pi^+\pi^-$.

 \Box K-matrix fit from FOCUS(≈ 1500 events) is able to fit both $D^+ \to \pi^+ \pi^+ \pi^-$ and $D_s^+ \to \pi^+ \pi^+ \pi^-$ using the same S-wave structure as in hadronic exeptriments.(Phys.Lett.B585:200-212,2004)

 $\Box D^+ \to \pi^+ \pi^+ \pi^-$

 $\Box D_s^+ \to \pi^+ \pi^+ \pi^-$

 \Box This does not solve the problem of the existence of the $\sigma(500)$ meson. It was present also in previous experiments.

Study of
$$D^+ \to K^- \pi^+ \pi^+$$
.

 \Box Isobar analysis from E791 of the decay $D^+ \to K^- \pi^+ \pi^+$ (≈ 15000 events).

(Phys.Rev.Lett.89:121801,2002)

 \Box A better fit is obtained introducing a $\kappa(800)$ resonance interfering with a coherent, uniform, S-wave background.

 \Box Resulting κ parameters.

$$m = 797 \pm 19 \pm 43 \ MeV/c^2$$
, $\Gamma = 410 \pm 43 \pm 87 \ MeV/c^2$

 \Box Isobar/K-matrix analysis from FOCUS (\approx 52000 events) based on LASS data.(Phys.Lett.B653:1-11,2007)

 \Box Both methods give good description of the data. Discrepancy at the $K\eta'$ threshold.

Model Independent Partial Wave Analysis $(D^+ \rightarrow K^- \pi^+ \pi^+)$.

 \Box E791. Study of $D^+ \to K^- \pi^+ \pi^+$ (Phys.Rev.D73:032004,2006).

 \Box $K\pi$ P-wave described with $K^*(892), K_1^*(1410), K_1^*(1680)$ Breit-Wigner's.

 \Box D-wave described by $K_2^*(1430)$ Breit-Wigner.

 \square S-wave extracted by spline-interpolation over 40 points.

At each point amplitude and phase are free parameters.

 $C_0(s_k)e^{i\phi_0(s_k)}$

 $\Box K\pi$ S-wave: Broad structure with dip at the $K_0^*(1430)$ resonance.

 \Box Solution compared with the fit from the isobar model.

 \square Tests have been made for multiple solutions.

Model Independent Partial Wave Analysis $(D^+ \rightarrow K^- \pi^+ \pi^+)$.

 \Box Comparison with results from I=1/2 $K^-\pi^+$ S-wave amplitude measurements (blue curves).

$$I = 1/2 S - wave$$

 \square LASS curve normalized to the E791 data at 1.3 GeV.

 \Box Phase normalized to the same mass shifting down by 70⁰.

 \square Watson theorem requires elastic phase to be the same.

Model Independent Partial Wave Analysis $(D^+ \rightarrow K^- \pi^+ \pi^+)$.

□ $D^+ \to K^- \pi^+ \pi^+$ from CLEO (141 000 events).(Phys.Rev.D78:052001,2008) □ In this case the $K_0^*(1430)$ resonance is described by a Breit-Wigner. □ Introduced a I=2 $\pi^+ \pi^+$ amplitude.N.N. Achasov and G.N. Shestakov, Phys. Rev. D67, 114018 (2003). □ Mass dependent phase from scattering experiments.

 \square S-wave almost flat.

Model Independent Partial Wave Analysis $(D_s^+ \rightarrow \pi^- \pi^+ \pi^+)$.

□ BaBar (≈ 13 000 events).(Phys. Rev. D 79, 032003 (2009) □ Dalitz plot and $\pi^+\pi^-$ projection: strong $f_0(980)$ signal and broad structure at ≈ 1.3 GeV.

 \Box Extraction of the $\pi^+\pi^-$ amplitude and phase coupled to $s\bar{s}$.

$$A_{\mathcal{S}-\text{wave}}(m_{\pi\pi}) = \text{Interp}(c_k(m_{\pi\pi})e^{i\phi_k(m_{\pi\pi})})_{k=1,\ldots,30}$$

Model Independent Partial Wave Analysis $(D_s^+ \rightarrow \pi^- \pi^+ \pi^+)$.

- Larga S wave contribution	Decay Mode	Decay fraction (%)) Amplitude	Phase(rad)
Measured with respect to the $f_2(1270)$	$f_2(1270)\pi^+$	$10.1 \pm 1.5 \pm 1.0$	1.(Fixed)	0.(Fixed)
resonance.	$ ho(770)\pi^+$	$1.8 \pm 0.5 \pm 1.0$	$0.19 \pm 0.02 \pm 0.12$	$1.1 \pm 0.1 \pm 0.2$
	$ ho(1450)\pi^+$	$2.3 \pm 0.8 \pm 1.7$	$1.2 \pm 0.3 \pm 1.0$	$4.1 \pm 0.2 \pm 0.5$
	$\mathcal{S} ext{-wave}$	$83.0 \pm 0.9 \pm 1.9$		
	Total	$97.2 \pm 3.7 \pm 3.8$		
	χ^2 / NDF	$\frac{437}{422-64} = 1.2$		

 \Box Measurement of the S-wave amplitude and phase.

 \square Comparison with the isobar and K-matrix analyses from E791 and FOCUS.

Coupled channel resonances.

 \Box The $f_0(980)$ resonance is usually described by a coupled channel Breit Wigner, the Flatté Formula:

Dalitz plot Analysis of $D_s^+ \to \pi^+ K^+ K^-$

 \Box Preliminary isobar BaBar anaysis ($\approx 101\ 000\ \text{events}$).

 \Box The spherical harmonic moment Y_1^0 show large S-P interference in the K^+K^- channel and very small in the $K^-\pi^+$ channel.

 \Box See also CLEO analysis ($\approx 14\ 000\ \text{events.}$)(Phys. Rev. D 79, 072008 (2009))

Direct Partial Wave Analysis.

□ Charm decays in some cases allow to extract new information in very clean conditions. □ BaBar: Dalitz plot Analysis of $D^0 \to \bar{K}^0 K^+ K^-$. (Phys.Rev.D72:052008,2005)

 \Box Presence of $\phi(1020)$ interfering with a threshold scalar $f_0/a_0(980)^0$.

- \square Presence of $a_0(980)^+$.
- \Box Assume, in the K^+K^- threshold region, a diagram:

 \Box Unnormalized Y_l^m moments:

$$m^{2}(K^{+}K^{-}) GeV^{2}/c^{4}$$

 \Box Y_1^0 shows a strong S-P interference. Y_2^0 shows all the P-wave.

 \Box The $f_0(980)$ and $a_0(980)$ lineshapes are very similar.

 \Box Neglecting *CP* violation, the strong phase difference, δ_D , between the \overline{D}^0 and D^0 decays to $K^*(892)^+K^-$ state and their amplitude ratio, r_D , are given by:

$$r_D e^{i\delta D} = \frac{{}^a D^0 \to K^{*-} K^+}{{}^a D^0 \to K^{*+} K^-} e^{i(\delta} K^{*-} K^{+-\delta} K^{*+} K^{-})$$

□ BaBar finds $\delta_D = -35.5^{\circ} \pm 1.9^{\circ}$ (stat) $\pm 2.2^{\circ}$ (syst) and $r_D = 0.599 \pm 0.013$ (stat) ± 0.011 (syst).

 \Box These results are consistent with CLEO measurements, $\delta_D = -28^\circ \pm 8^\circ$ (stat) $\pm 11^\circ$ (syst) and $r_D = 0.52 \pm 10^\circ$

 $0.05 \text{ (stat)} \pm 0.04 \text{ (syst)}.$

Dalitz plot analysis and search for CP violation.

 \Box CLEO. In the limit of CP conservation, charge conjugate decays will have the same Dalitz plot distribution.

 \square CP violation expected in Cabibbo-Suppressed charm decays.

 \Box The integrated *CP* violation across the Dalitz plot is determined from:

$$\mathcal{A}_{CP} = \int \frac{|\mathcal{M}|^2 - \left|\overline{\mathcal{M}}\right|^2}{|\mathcal{M}|^2 + \left|\overline{\mathcal{M}}\right|^2} dm_{ab}^2 dm_{bc}^2 / \int dm_{ab}^2 dm_{bc}^2 ,$$

where \mathcal{M} and $\overline{\mathcal{M}}$ are the D^0 and \overline{D}^0 Dalitz plot amplitudes. \Box No evidence of CP violation has been observed.

Decay mode	$\mathcal{A}_{CP}(\%)$
$D^0 \to K^- \pi^+ \pi^0$	-3.1 ± 8.6
$D^0 \to K^+ \pi^- \pi^0$	$+9^{+22}_{-25}$
$D^0 \rightarrow K^0_S \pi^+ \pi^-$	$-0.9 \pm 2.1 + 1.0 + 1.3 - 4.3 - 3.7$
$D^0 \rightarrow \pi^+ \pi^- \pi^0$	$+1^{+9}_{-7} \pm 9$
$D^+ \rightarrow K^+ K^- \pi^+$	$-0.4\pm2.0^{+0.2}_{-0.5}$

Dalitz plot analysis of $D^0 \to \pi^+ \pi^- \pi^0$.

□ CLEO: Dalitz analysis of $D^0 \to \pi^+ \pi^- \pi^0$ (≈ 1 900 events) Phys.Rev.D72:031102,2005 □ BaBar: Dalitz analysis of $D^0 \to \pi^+ \pi^- \pi^0$ (≈ 45 000 events) Phys.Rev.D78:052001,2008

State	R_r (%)	$\Delta \phi_r$ (°)	$f_r(\%)$
$\rho^{+}(770)$	100	0	$67.8 {\pm} 0.0 {\pm} 0.6$
$ ho^{0}(770)$	$58.8 {\pm} 0.6 {\pm} 0.2$	$16.2 {\pm} 0.6 {\pm} 0.4$	$26.2 {\pm} 0.5 {\pm} 1.1$
$\rho^{-}(770)$	$71.4 {\pm} 0.8 {\pm} 0.3$	$-2.0{\pm}0.6{\pm}0.6$	$34.6 {\pm} 0.8 {\pm} 0.3$
Non-Res	$57 \pm 7 \pm 8$	$-11\pm4\pm2$	$0.84{\pm}0.21{\pm}0.12$

 \Box Decay dominated by ρ resonances (including $\rho(1700)$).

 $\Box \pi \pi S - wave$ consistent with zero.

Search for CP violation.

□ BaBar. Study of $D^0 \to \pi^+ \pi^- \pi^0$ and $D^0 \to K^+ K^- \pi^0$. □ Compute the asymmetry on the Dalitz plot. (Phys.Rev.D78:051102,2008)

$$\Delta = \left(n_{\overline{D}{}^0} - R \cdot n_{D^0} \right) / \sqrt{\sigma_n^2_{\overline{D}{}^0} + R^2 \cdot \sigma_n^2_{D^0}}$$

n denotes the number of events in a DP element and σ its uncertainty.

 \Box The factor R, equal to 0.983 ± 0.006 for $D^0 \to \pi^+ \pi^- \pi^0$ and 1.020 ± 0.016 for $D^0 \to K^+ K^- \pi^0$, is the ratio of the number of efficiency-corrected \bar{D}^0 to D^0 events.

 \Box Computed asymmetries on fractions, phases and spherical harmonics moments. No evidence for CP violation.

Conclusions.

 \square Dalitz plot analysis of three-body charm decays is still a fundamental tool for the study of heavy mesons decays.

 \Box High statistics studies of charm decays provide information needed for the study of B decays. \Box *Examples:*

- Hot topic is the amount of S-wave below the ϕ in $B_s \to J/\psi \phi$.
- 3-body or 4-body Dalitz analyses needed for measuring γ .

 \square Many analyses are still in progress.

 \square Isobar model often requires the introduction of "new resonances".

□ K-matrix fits give good description of the data. However does not provide new information on critical issues.

□ Partial Wave Analyses are providing new information and new data which are waiting to be understood.