Measuring D-Mixing Parameters at CLEO-c

Paras Naik

CLEO-c

- Hermetic detector based at CESR (the Cornell Electron Storage Ring)
- Operated at energies around cc threshold
- We study $e^+e^- \rightarrow \psi(3770) \rightarrow D^0\overline{D^0}$ decays
 - C = -1 for these decays at $\psi(3770)$ threshold
 - Total integrated luminosity of this sample is 818 pb⁻¹
- Quantum correlated (QC) states
 - Example: Properly reconstructing one neutral D decay to a CP eigenstate uniquely identifies the other D decay to be of opposite CP
- Single Tag
 - We fully reconstruct one of the neutral D decays
- Double Tag
 - We fully reconstruct the event (both neutral D decays)
- CP-Tagged
 - Reconstruct other neutral D to a CP eigenstate

D-Mixing (in the no CPV limit)

$$i\frac{\partial}{\partial t} \begin{pmatrix} D\\ \overline{D} \end{pmatrix} = \begin{pmatrix} H_{11} & H_{12}\\ H_{21} & H_{22} \end{pmatrix} \begin{pmatrix} D\\ \overline{D} \end{pmatrix} \text{ where } H_{11} = M_{11} - i\frac{\Gamma_{11}}{2} \text{ etc...} \qquad x \coloneqq \frac{\Delta M}{\Gamma} \text{ and } y \coloneqq \frac{\Delta\Gamma}{2\Gamma} \qquad D_{1,2} = \frac{D^0 \pm D^0}{\sqrt{2}}$$

- $H_{12}, H_{21} \neq 0$ implies that flavor and mass eigenstates are not equivalent.
- Just some of the methods to study D-Mixing:
 - Direct lifetime measurements: $y = \frac{\tau(D^0 \to K^- \pi^+)}{\tau(D^0 \to K^- K^+)} 1$
 - Compare K+K⁻ and π+π⁻ with K-π+.
 - Time-dependent Dalitz analysis of K⁰_Sπ⁺π⁻:
 - Intermediate CP-eigenstates give y.
 - Interference between CP+ and CP- gives x.
 - Time-dependent wrong-sign rate $D^0 \rightarrow K^-\pi^+$:
 - Interfering DCS and mixing amplitudes modulate exponential decay time.
 - Ambiguity from strong phase: y' = y cos δ x sin δ
 - $< K^{-}\pi^{+} \mid \overline{D^{0}} > / < K^{-}\pi^{+} \mid D^{0} > = -r e^{-i\delta}$
- In these studies, time-dependence gives 1st-order x/y sensitivity:
 - These studies need boosted D mesons to resolve decay time.

E791	Phys. Rev. Lett. 83, 32 (1999).
FOCUS	Phys. Lett. B 485, 62 (2000).
CLEO	Phys. Rev. D 65, 092001 (2002).
Belle	Phys. Rev. Lett. 88, 162001 (2002)
Belle	Phys. Rev. Lett. 98, 211803 (2007)
BaBar	Phys. Rev. D 78, 011105 (2008).

CLEO	Phys. Rev. D 72, 012001 (2005).
Belle	Phys. Rev. Lett. 99, 131803 (2007).

Phys. Rev. D 57, 13 (1998).
Phys. Rev. Lett. 84, 5038 (2000).
Phys. Lett. B 618, 23 (2005).
Phys. Rev. Lett. 96, 151801 (2006).
Phys. Rev. Lett. 98, 211802 (2007).
Phys. Rev. Lett. 100, 121802 (2008).

Quantum Correlations at CLEO-c

D. Asner and W. Sun, Phys. Rev. D73, 034024 (2006) Phys. Rev. D77, 019901(E) (2008)

- At CLEO-c, interference between D^0 and $\overline{D^0}$, gives us mixing parameters
 - Appears in <u>time-integrated</u> yields: $M_{ij}^2 = \left| \langle i | D^0 \rangle \langle j | \overline{D^0} \rangle \langle j | D^0 \rangle \langle i | \overline{D^0} \rangle \right|^2$
- We measure the effect of quantum correlations (QC) on the normalized yields of single-tag (one D reconstructed) and double-tag (D and D reconstructed) modes
- We then input these yields into a global fit, where many decay modes are fit simultaneously: Compare <u>effective BR (with QC)</u> to incoherent BR to give y, cos δ.
- Using this method, we are capable of...
 - First measurement of cos δ
 - Example mode: Reconstruct K^+K^- with $K^-\pi^+$
 - $\Rightarrow K^-\pi^+$ must come from D_1 (*CP*-)
 - Rate(K-π+,CP+)_{QC} = BR(K-π+) (1 + 2 r cos δ + r²)
 - First-order sensitivity to y
 - Example mode: Reconstruct K^+K^- (*CP*+) decay with semileptonic (SL)
 - \Rightarrow SL decay must come from a D_1 (*CP*–)
 - BR(Inclusive e^-) = Rate(Inclusive e^- , CP+)_{QC} (1 y)
- *CP* violation is neglected in this analysis.

- Externally measured *BR*s.
- Single tags at ψ(3770) (immune to QC).

Measuring D-Mixing Parameters at CLEO-c

Coherent vs. Incoherent Decay

D. Asner and W. Sun, Phys. Rev. D73, 034024 (2006) Phys. Rev. D77, 019901(E) (2008)

Strategy

$$R_{WS}\equiv rac{\Gamma(\overline{D^0}
ightarrow K^-\pi^+)}{\Gamma(D^0
ightarrow K^-\pi^+)}=r^2+ry'+R_M$$

$$R_M \equiv \frac{x^2 + y^2}{2}$$

- Dataset: 281 pb⁻¹ = 10⁶ *C*-odd $D^0 \overline{D^0}$.
- Combine inputs + error matrix in a χ^2 fit.
 - ST and DT yields
 - Efficiencies (signal and background)
 - Crossfeed/background estimates
 - Systematic errors (small compared to stat.)
 - External *BR* and y⁽¹⁾ measurements
- Single tag yields (8):

 ST			quantum-correlated rate incoherent rate		
<i>Κ</i> -π+			1		
<i>K</i> +π-			1		
<i>K</i> − <i>K</i> +			1		
π-π+ <i>C</i>			1		
<i>Κ</i> ⁰ _S π ⁰ π ⁰			1		
<i>Κ</i> ⁰ _S π ⁰	C	P_	1		
<i>Κ</i> ⁰ _Տ η	U	1	1		
K⁰ _S ω			1		

DT

quantum-correlated rate incoherent rate

(number of DT of this type)							
 Fully-reconstructed DT yields (24): 							
<i>K</i> -π+	<i>K</i> +π-	(1)	1+2 <i>R_{WS}</i> -4 <i>r</i> cosδ(<i>r</i> cosδ+y)				
K±π∓	K±π∓	(2)	$(x^2 + y^2)/2R_{WS}$				
K±π∓	CP+	(6)	1 + (2 <i>r</i> cosδ+ <i>y</i>) / (1+ <i>R</i> _{WS})				
K±π∓	CP–	(6)	1 – (2 <i>r</i> cosδ+ <i>y</i>) / (1+ <i>R</i> _{WS})				
<i>CP</i> + <i>CP</i> - (9) 2							
Inclusive e ⁺ or e ⁻ vs. hadronic (14):							
• Ir	iclusive e	e⁺ or e	- vs. hadronic (14):				
■ Ir e [∓]	iclusive e <i>K</i> ∓π±	e+ or e (2)	- vs. hadronic (14): 1 – r (ycosδ + xsinδ)				
• Ir e [∓] e ⁻ /e ⁺	nclusive e <i>K</i> ∓π± <i>CP</i> +	e+ or e (2) (6)	- vs. hadronic (14): 1 – r (ycosδ + xsinδ) 1 + y				
■ Ir e [∓] e ⁻ /e ⁺ e ⁻ /e ⁺	nclusive e <i>K</i> ∓π± CP+ CP–	e ⁺ or e (2) (6) (6)	- vs. hadronic (14): 1 – r (ycosδ + xsinδ) 1 + y 1 – y				
 In e⁺ e⁻/e⁺ e⁻/e⁺ K 	nclusive e <i>K</i> ∓π± <i>CP</i> + <i>CP</i> –	e+ or e (2) (6) (6) P+) vs	- vs. hadronic (14): 1 – r (ycosδ + xsinδ) 1 + y 1 – y . hadronic (5):				
 In e[∓] e⁻/e⁺ e⁻/e⁺ K⁰_Lπ⁰ 	nclusive e <i>K</i> ∓π± <i>CP</i> + <i>CP</i> - ⁰ _L π ⁰ (= <i>CF</i> <i>K</i> ±π∓	e+ or e (2) (6) (6) P+) vs (2)	- vs. hadronic (14): 1 – r (ycosδ + xsinδ) 1 + y 1 – y . hadronic (5): 1 + (2r cosδ+y) / (1+R _{WS})				

Paras Naik, University of Bristol

Yield Measurements

- Fully-reconstructed single tags:
 - Fit beam-constrained mass distribution.

$$M_{BC} = \sqrt{E_{beam}^2 - |p_D|^2}$$

- Fully-reconstructed double tags:
 - Two fully-reconstructed STs
 - Count events in 2D M_{BC} plane.
- Inclusive semileptonic DTs:
 - One fully-reconstructed ST
 - Plus one electron candidate
 - Fit e[±] momentum spectrum
- $K_L^0 \pi^0$ double tags:
 - One fully-reconstructed ST
 - Plus one π⁰ candidate
 - Compute missing mass-squared
 - Signal peaks at m²(K⁰).

External Measurements

- External inputs improve y and cos δ precision.
- All correlations among measurements included in fit.
- Standard fit includes:
 - Info on r needed to obtain cosδ:
 - $R_{WS} = r^2 + ry' + R_M$
 - $R_M = (x^2 + y^2)/2$
 - Assume $x\sin\delta = 0 \Rightarrow y' \sim = y\cos\delta$
 - Kπ and CP-eigenstate BRs:

Parameter	Average	
\overline{y}	0.00662 ± 0.00211	
\boldsymbol{x}	0.00811 ± 0.00334	
r^2	0.00339 ± 0.00012	
y'	0.0034 ± 0.0030	
x'^2	0.00006 ± 0.00018	

Parar	neter	Average				
R_{WS}		0.00409 ± 0.00022				
R_M		0.00017 ± 0.00039				
$K^{-}\pi^{-}$	÷	0.0381 ± 0.0009				
K^-K	$^{\prime +}/K^{-}\pi^{+}$	0.1010 ± 0.0016				
$\pi^{-}\pi^{+}$	$K/K^{-}\pi^{+}$	0.0359 ± 0.0005				
$K^0_L\pi^0$)	0.0100 ± 0.0008				
$K^0_S\pi^0$	1	0.0115 ± 0.0012				
$K^{0}_{S}\eta$		0.00380 ± 0.00060				
$K^0_S\omega$		0.0130 ± 0.0030				

- Extended fit averages y and y':
 - CP+ lifetimes (y)
 - $K_{S}^{0}\pi^{+}\pi^{-}$ Dalitz analysis (*x*, *y*)
 - $K\pi CP$ -conserving fits (y', t^2, R_M)
 - Includes covariance matrices from Belle & BABAR (thanks!), CLEO

Paras Naik, University of Bristol

ResultsPRL 100, 221801 (2008)PRD 78, 012001 (2008)

 Extended fit with a likelihood scan of the physically allowed region leads to a measurement of:

$$\delta = \left(22^{+11+9}_{-12-11}\right)^{\circ}$$

http://www.slac.stanford.edu/xorg/hfag

- Fit result important component in average of charm mixing
 - Selects one of two possible solutions for δ

Future Improvements

- We need better precision on y and r² to control non-linearities in the fit.
- Need more semileptonic vs. CP eigenstates for y.
 - Add Kev vs. $K_L \pi^0$ (using two-missing-particle technique) \Rightarrow 70% more Kev vs. CP-
 - Add Kµv (new final state for CLEO-c) basically doubles SL statistics
- Add wrong-sign semileptonic vs. $K\pi$ for r^2 .
 - Add wrong-sign Kev vs. Kπ < _____ exclusive semileptonic modes
- Also
 - Add additional modes which contain a $K_L \Rightarrow 30\%$ more CP+ and 60% more CP-
 - Add CP-tagged, flavor-tagged, and single-tagged K_sπ⁺π⁻ and K_Lπ⁺π⁻ modes roughly doubles the number of CP tags
- Use our full 3.0 million D⁰D⁰ pair sample (818 pb⁻¹)

	Parameter	\pm stat. \pm syst. for N = 3 × 10 ⁶ D ⁰ \overline{D}^0
Expected sensitivities	y	$\pm 0.012 \pm 0.005$
D. Asner and W. Sun.	$x^2 \ (10^{-3})$	$\pm 0.6 \pm 0.6$
Phys. Rev. D73, 034024 (2006)	$\cos \delta_{K\pi}$	$\pm 0.20 \pm 0.04$
Phys. Rev. D77, 019901(E) (2008)	$x\sin\delta_{K\pi}$	$\pm 0.027 \pm 0.005$
	$r^2 (10^{-3})$	$\pm 1.0 \pm 0.0$

Paras Naik, University of Bristol

Example: Ke_V vs. K_Lπ⁰

- We use the Paar-Brower technique (used by Belle and BaBar for B SL decays) to reconstruct a final state with two missing particles.
- W.S. Brower and H.P. Paar, Nucl. Instrum. Meth. A 421, 411-416 (1999)
- BaBar: Phys. Rev. Lett. 97, 211801 (2006)
- Belle: Phys. Lett. B 648, 139 (2007)

Example: Kµv

- CLEO-c was unable to use its muon chambers due low momenta of muons.
- However, we have
 learned to make
 selections to separate μ
 from π and e.
- We use P_{miss} and $U = E_{miss.} - IP_{miss.}I$ to isolate $K\mu v$
- Kμv signal is separable from main backgrounds
- May see more muon analyses at CLEO-c

Summary

- First measurement of $\cos \delta$ (needed to interpret other *D*-mixing results).
 - Allows y' to be added to world-average y
- Demonstrated new technique for charm mixing studies.
 - Time-independent first-order sensitivity to mixing parameters and phases.
 - With full CLEO-c dataset (E_{cm} = 3770 MeV) expect:

σ(cosδ) ~ ±(0.1-0.2) σ(y) ~ ±0.01 σ(xsinδ) ~ ±0.03

- BES III expects ~25x more data
 - Factor of 5 improvement in sensitivity possible

A nice environment to study *D*-mixing parameters!

BEE0

Backup slides

Switching from Inclusive e to Exclusive Kev

Inclusion of K⁰sπ⁺π⁻ and K⁰Lπ⁺π⁻

- CLEO-c has measured the average cosine and sine of
 D → K⁰sm strong phase differences (arXiv:0903.1681v1) to allow a model-independent determination of γ with B[±] → D_{Ksm} K[±]
- See Guy Wilkinson's talk yesterday
- In this analysis we already have the collected CP-tags and flavor-tags we need for our quantum-correlated analysis! κ_Lπ⁺π⁻ κ_sπ⁺π⁻

$$-A (D^{0} \rightarrow K_{L}^{0}\pi^{+}\pi^{-}) =$$

$$A (D^{0} \rightarrow K_{S}^{0}\pi^{+}\pi^{-}) - \sqrt{2}A (D^{0} \rightarrow K_{flavour}^{0}\pi^{+}\pi^{-})$$

$$CF+DCS DCS$$
Correction order tan² θ_{c} – accounting for this introduces small model dependence

• Adding K_{S}^{n+n-} single tags will be the next step.

Comment

- Information in inputs: observe change in parameter errors when removed from fit.
- y: [Info: 90% e^{\pm}/CP DTs, 10% $e^{\pm}/K\pi$ DTs]
- $\cos\delta$: [Info: 50% $K\pi/CP$ + DTs, 50% $K\pi/CP$ DTs]
 - Strong nonlinearity introduced by $R_{WS} \sim = r^2 + 2yr\cos\delta$:

Systematic Uncertainties

- Mode-dependent correlated uncertainties cancel in y and $cos\delta$, but only if external measurements are not included.
 - Tracking, π^0 , η , K^0_{ς} , PID, EID efficiency, FSR systematics: use DHad.
 - ΔE cut, ω mass cut, K^0_{s} mass cut, K^0_{s} flight significance cut, K^0_{s} PID.
 - Peaking background BFs: values and errors from PDG.
 - Multiple candidates, SL form factor.
 - Event selection variations: **1**11 dominates y and $cos\delta$ syst error.
- **Uncorrelated uncertainties:**
 - Fit function variations.

Source	Uncertainty (%)	Scheme
Track finding	0.3	per track
K^\pm hadronic interactions	0.6	$\mathrm{per}~K^\pm$
$K^0_S { m finding}$	1.9	$\mathrm{per}~K^0_S$
$\pi^0 \operatorname{finding}$	4.0	$\operatorname{per} \pi^0$
$\eta { m finding}$	4.0	$\mathrm{per}\;\eta$
dE/dx and RICH	0.3	per π^{\pm} PID cut
dE/dx and RICH	0.3	per K^{\pm} PID cut
EID	1.0	per e^{\pm}

	ΔE	ISR*	FSR*	Lepton Veto [*]	Other	
$K^{\mp}\pi^{\pm}$	0.5	0.5	1.2	0.5		
K^+K^-	0.9	0.5	0.8	0.4	0.5	$K^{\pm}\cos heta$ cut
$\pi^+\pi^-$	1.9	0.5	1.7	3.2		
$K^0_S \pi^0 \pi^0$	2.6	0.5			1.5	K^0_S daughter PID
					0.7	resonant substructure
$K^0_S \pi^0$	0.9	0.5				
$K_S^0\eta$	5.5	0.5			0.3	η mass cut
					0.7	$\mathcal{B}(\eta o \gamma \gamma)$ [22]
$K^0_S\omega$	1.2	0.5	0.8		1.4	ω mass cut
					0.8	$\mathcal{B}(\omega o \pi^+ \pi^- \pi^0)$ [22]
$X e \nu$		0.5	0.3		2.0	${ m spectrum\ extrapolation}$
					0.7	multiple e^{\pm} candidates
$K^0_L\pi^0$		0.5			0.7	background subtraction
					0.3	extra track veto
					1.4	signal shape
					1.6	extra π^0 veto
					0.5	η veto
Scheme	$\operatorname{per} D$	per yield	$\operatorname{per} D$	per ST	$\mathrm{per}\; D$	
$\lambda_{ m DT}$	$\sqrt{\alpha^2+\beta^2}$	$(\alpha + \beta)/2$	$2 \alpha + \beta$	0	$\sqrt{\alpha^2 + \beta^2}$	

Other Systematic Effects

- C+ contamination of initial state (not expected, cf. A. Petrov):
 - $e^+e^- -> \gamma D^0 \overline{D}^0$ is C+, but photon must be radiated from D^0 or \overline{D}^0 , or from $\psi(3770)$ itself.
 - ISR, FSR, bremsstrahlung photons do not flip C eigenvalue.
- Allow fit to determine C+ fraction.
 - Include same-CP double tags (CP±/CP±).
 - Allowed decay only for C+.
 - All yields consistent with zero.
 - Fit each yield to sum of C- and C+ contributions.
 - Results: $C + / C = -0.003 \pm 0.023$.
 - No evidence for *C*+.
 - Other results unchanged.
- Variation of $cos\delta$ and y with $xsin\delta$ —include additional systematic error:

Paras Naik, University of Bristol