

D-Mixing and search for CPV at Belle

Marko Starič J. Stefan Institute, Ljubljana, Slovenia

20-22 May 2009 Charm 2009, Leimen, Germany

- Introduction
- WS decays
- Decays to CP eigenstates
- Self-conjugate decays
- Conclusions

Mixing

• Flavor eigenstates \neq mass eigenstates (with $m_{1,2}$, $\Gamma_{1,2}$)

$$|D_{1,2}\rangle = p|D^0\rangle \pm q|\overline{D}{}^0\rangle, \qquad p^2 + q^2 = 1$$

• D^0 at t = 0 evolves as:

$$|D^{0}(t)\rangle = e^{-(\Gamma/2 + im)t} \left[\cosh(\frac{y + ix}{2}\Gamma t)|D^{0}\rangle + \frac{q}{p}\sinh(\frac{y + ix}{2}\Gamma t)|\overline{D}^{0}\rangle\right]$$

$$x = \frac{\Delta m}{\Gamma}$$
 $y = \frac{\Delta \Gamma}{2\Gamma}$

◆ $|x|, |y| \ll 1$:

$$\frac{dN_{D^0 \to f}}{dt} \propto |\langle f|\mathcal{H}|D^0(t)\rangle|^2 = e^{-\Gamma t} |\langle f|\mathcal{H}|D^0\rangle + \frac{q}{p} (\frac{y+ix}{2}\Gamma t)\langle f|\mathcal{H}|\overline{D}^0\rangle|^2$$

Decay time distribution of different final states sensitive to different combinations of mixing parameters x and y.

Experimental method _____

 $D^{*+} \rightarrow \pi^+ D^0$

 \triangleright flavor tagging by π_{slow} charge

- background suppression
- D^0 proper decay time t measurement: -

$$t = rac{l_{dec}}{ceta\gamma} \;, \qquad eta\gamma = rac{p_{D^0}}{M_{D^0}}$$

 σ_t ... decay-time uncertainty (from vtx cov. matrices)

- Measurements performed at $\Upsilon(4S)$ ▷ to reject D^{*+} from B decays: $p_{D^{*+}}^{CMS} > 2.5 \ GeV/c$
- **Observables:**

$$m = m(K\pi)$$

$$q = m(K\pi\pi_s) - m(K\pi) - m_\pi$$

 $_ D^0 \rightarrow K^+ \pi^-$ (400 fb⁻¹) $_$ Search for CPV \triangleright Fit D^0 and $\overline{D^0}$ samples separately $\Rightarrow R_D^{\pm}, x'^{2\pm}, y'^{\pm}$ ✤ CPV in DCS decays: $A_D = \frac{R_D^+ - R_D^-}{R_D^+ + R_D^-}$ CPV in mixing and interference \rightarrow by solving 4 equations for 4 unknowns: $x'^{\pm} = (1 \pm \frac{1}{2}A_M) \cdot (x'\cos\phi \pm y'\sin\phi)$ $y'^{\pm} = (1 \pm \frac{1}{2}A_M) \cdot (y'\cos\phi \mp x'\sin\phi)$ $\to x', y', \phi, |q/p| = 1 + \frac{1}{2}A_M$

-

 $_ D^0
ightarrow K^+ \pi^-$ (400 fb $^{-1}$) $_$

BELLE

DCS/CF ratio:

 $R_D = (0.364 \pm 0.017)\%$

Mixing:

$$x'^{2} = (0.18^{+0.21}_{-0.23}) \times 10^{-3}$$
$$y' = (0.6^{+4.0}_{-3.9}) \times 10^{-3}$$

 \rightarrow no mixing point at 2σ

$$A_D = (2.3 \pm 4.7)\%$$

 $A_M = 0.67 \pm 1.2$
 $|\phi| = 0.16 \pm 0.44$

 \rightarrow consistent with no CPV

Unbinned fit to time distributions 100fs Signal D0 & D3body ത് 1000 Combinatoric Event Mixing (95%UL) Interference (95%UL) 500 0 -2000 2000 4000 n Proper time (fs) 95% C.L. contours ^و ب × 20 no CPV (stat. only) no CPV 10 CPV 0 È -10 -20 0.2 0.6 0.4 0.8 0 × 10⁻³ x′²

 $_ D^0 \rightarrow K^+ K^-, \ \pi^+ \pi^-$ (540 fb⁻¹) $_$ Decays to CP-even eigenstates K^+K^- , $\pi^+\pi^-$ PRL 98, 211803 (2007) Measurement of lifetime difference between $D^0 \rightarrow K^-\pi^+$ and $K^+K^-, \pi^+\pi^$ $y_{CP} = \frac{\tau(K^-\pi^+)}{\tau(K^+K^-)} - 1$ ▷ mixing parameter: \triangleright in CP conservation limit: $y_{CP} = y = \Delta \Gamma / 2\Gamma$ • If CP not conserved, difference in lifetimes of $D^0/\overline{D}^0 \to K^+K^-, \pi^+\pi^ A_{\Gamma} = \frac{\tau(\overline{D}^0 \to K^- K^+) - \tau(D^0 \to K^+ K^-)}{\tau(\overline{D}^0 \to K^- K^+) + \tau(D^0 \to K^+ K^-)}$ ▷ CP violating parameter: $\triangleright y_{CP} = y\cos\phi - \frac{1}{2}A_Mx\sin\phi$ (S. Bergmann et.al., PLB 486, 418 (2000)) $\triangleright A_{\Gamma} = \frac{1}{2} A_M y \cos \phi - x \sin \phi$ PLB 670, 190 (2008) Measurement of CP-violating asymmetry A_{CP} $A_{CP}^{f} = \frac{\mathcal{B}(D^{0} \to f) - \mathcal{B}(\bar{D}^{0} \to \bar{f})}{\mathcal{B}(D^{0} \to f) + \mathcal{B}(\bar{D}^{0} \to \bar{f})}$ $A_{CP}^f = a_d^f + a_{\text{ind}} = a_d^f - A_{\Gamma}$

 $- D^0 \rightarrow K^+ K^-, \ \pi^+ \pi^-$ (540 fb⁻¹) ___

Data samples: signal yields (purities)

channel	KK	$K\pi$	$\pi\pi$
signal	110k	1.2M	50k
purity	98%	99%	92%

- $\ensuremath{\clubsuit}$ Background estimated from sidebands in m
- Resolution function: decay mode and run period dependent
- Simultaneous $KK/\pi\pi/K\pi$ binned maximum likelihood fit

$$D^0 \to K^+ K^-, \ \pi^+ \pi^-$$
 (540 fb⁻¹) ____

Results

Evidence for $D^0 - \overline{D}^0$ mixing (regardless of possible CPV)

 $y_{CP} = (1.31 \pm 0.32 \pm 0.25) \%$

 $> 3\sigma$ above zero (4.1 σ stat. only)

$$A_{\Gamma} = (0.01 \pm 0.30 \pm 0.15)$$
 %

no evidence for CP violation

10⁵

t (fs)

 $D^{0} \rightarrow K^{+}K^{-}, \ \pi^{+}\pi^{-}$ (540 fb⁻¹) _ Search for CP-violating asymmetry A_{CP} Measured asymmetry $A^{reco} = A_{FB}^{D^{*+}} + A_{CP}^{f} + A_{\epsilon}^{\pi}$ Asymmetry of slow pion efficiency (A_{ϵ}^{π}) can be measured using tagged and untagged $D^0 \rightarrow K^- \pi^+$ $A_{\rm rec}^{\rm tag} = A_{FB} + A_{CP}^{K\pi} + A_{\epsilon}^{K\pi} + A_{\epsilon}^{\pi}$ $A_{\rm rec}^{\rm untag} = A_{FB} + A_{CP}^{K\pi} + A_{\epsilon}^{K\pi}$ Efficiency corrected asymmetry: $A_{corr}^{reco} = A^{reco} - A_{\epsilon}^{\pi} = A_{FB} + A_{CP}^{f}$ Forward-backward asymmetry is an odd function of $\cos \theta^*$ A_{CP} and A_{FB} are then obtained by adding/subtracting bins at $\pm \cos \theta^*$: $A_{CP} = \frac{A_{corr}^{reco}(\cos\theta^*) + A_{corr}^{reco}(-\cos\theta^*)}{2}$ $A_{FB} = \frac{A_{corr}^{reco}(\cos\theta^*) - A_{corr}^{reco}(-\cos\theta^*)}{2}$ 20-22 May 2009 D-Mixing and search for CPV at Belle (page 11)

 $_ D^0
ightarrow \phi K^0_s$ (673 fb $^{-1}$) $_$ Decays to CP-odd eigenstate ϕK^0_s to be submitted to PRD Measurement of lifetime difference between CP-even and CP-odd eigenstates OFF . **OFF** $\frac{dN}{ds_0}$ aribtrary units • $m(K^+K^-)$ dependent CP mixture: \triangleright peak region: mainly CP-odd ($\phi(1020)$) - CP-even \triangleright sideband: mainly CP-even ($a_0(980)$) -CP-odd Decay rate (no CPV): $\frac{dN}{dt} \propto a_1(s_0)e^{-\frac{t}{\tau}(1+y)} + a_2(s_0)e^{-\frac{t}{\tau}(1-y)}$ 1.05 1.00 1.10 1.15 1 20 $s_0 \; [{
m GeV}^2/c^4]$ By measuring effective lifetimes in the peak region (ON) and in sideband (OFF) $y_{CP} = \frac{1}{f_{ON} - f_{OFF}} \cdot \frac{\tau_{ON} - \tau_{OFF}}{\tau_{ON} + \tau_{OFF}}$ f_{ON} , f_{OFF} CP-even fractions, obtained from Dalitz model Topologically equal events in ON and OFF regions \rightarrow reduced effects of resolution function.

 $- D^0
ightarrow \phi K^0_s$ (673 fb $^{-1}$) ____

Untagged data sample used to increase statistics

region	ON	OFF
signal	72k	62k
purity	97%	91%

- Background estimated from sidebands in (m_{D^0}, m_{K_s}) plane
- f_{ON} , f_{OFF} from fit to $m(K^+K^-)$ using 8-resonance Dalitz model
- τ_{ON} , τ_{OFF} determined from mean proper decay times of all events and background events:

$$\tau_R = \frac{\langle t \rangle^R - (1 - p^R) \langle t \rangle^R_b}{p^R}, \quad R = \{ON, OFF\}$$

Results

$$y_{CP} =$$
 (0.11 \pm 0.61 \pm 0.52) %

 $_ D^0 \rightarrow K_s^0 \pi^+ \pi^-$ Dalitz (540 fb⁻¹) $_$ Self-conjugate decays $K_s^0 \pi^+\pi^-$ PRL 99, 131803 (2007) Different decays identified through Dalitz plot analysis CF: $D^0 \rightarrow K^{*-}\pi^+$ DCS: $D^0 \rightarrow K^{*+}\pi^-$ **CP:** $D^0 \rightarrow \rho^0 K_s^0$ \rightarrow relative phases can be determined (unlike $D^0 \rightarrow K^+ \pi^-$) Matrix element is Dalitz space dependent: $\mathcal{M}(m_{-}^{2}, m_{+}^{2}, t) = \mathcal{A}(m_{-}^{2}, m_{+}^{2}) \frac{e_{1}(t) + e_{2}(t)}{2} + \frac{q}{n} \overline{\mathcal{A}}(m_{-}^{2}, m_{+}^{2}) \frac{e_{1}(t) - e_{2}(t)}{2}$ where $m_{\pm}^2 = m^2 (K_s^0 \pi^{\pm})$ and $e_{1,2}(t) = e^{-i(m_{1,2} - i\Gamma_{1,2}/2)t}$ • Amplitudes $\mathcal{A}(\overline{\mathcal{A}})$ for $D^0(\overline{D}^0)$ decays parametrized as a sum of quasi-two-body amplitudes + non-resonant contribution • Decay rate $dN/dt \propto |\mathcal{M}(m_{-}^2, m_{+}^2, t)|^2$ contains terms $\exp(-\Gamma t)\cos(x\Gamma t)$, $\exp(-\Gamma t)\sin(x\Gamma t)$, $\exp[-(1\pm y)\Gamma t]$ \bullet With time-dependent Dalitz plot analysis both mixing parameters (x and y) can be measured.

$- D^0 \rightarrow K_s^0 \pi^+ \pi^-$ Dalitz (540 fb⁻¹) _____

Signal yield and purity

BELLE

signal	purity
534000	95%

Dalitz projection of a 3D fit (unbinned max. likelihood)

Resonance	Amplitude	Phase (deg)	Fit fraction
$K^{*}(892)^{-}$	1.629 ± 0.005	134.3 ± 0.3	0.6227
$K_0^*(1430)^-$	2.12 ± 0.02	-0.9 ± 0.5	0.0724
$K_2^*(1430)^-$	0.87 ± 0.01	-47.3 ± 0.7	0.0133
$K^*(1410)^-$	0.65 ± 0.02	111 ± 2	0.0048
$K^*(1680)^-$	0.60 ± 0.05	147 ± 5	0.0002
$K^{*}(892)^{+}$	0.152 ± 0.003	-37.5 ± 1.1	0.0054
$K_0^*(1430)^+$	0.541 ± 0.013	91.8 ± 1.5	0.0047
$K_2^*(1430)^+$	0.276 ± 0.010	-106 ± 3	0.0013
$K^*(1410)^+$	0.333 ± 0.016	-102 ± 2	0.0013
$K^*(1680)^+$	0.73 ± 0.10	103 ± 6	0.0004
$\rho(770)$	1 (fixed)	0 (fixed)	0.2111
$\omega(782)$	0.0380 ± 0.0006	115.1 ± 0.9	0.0063
$f_0(980)$	0.380 ± 0.002	-147.1 ± 0.9	0.0452
$f_0(1370)$	1.46 ± 0.04	98.6 ± 1.4	0.0162
$f_2(1270)$	1.43 ± 0.02	-13.6 ± 1.1	0.0180
$ \rho(1450) $	0.72 ± 0.02	40.9 ± 1.9	0.0024
σ_1	1.387 ± 0.018	-147 ± 1	0.0914
σ_2	0.267 ± 0.009	-157 ± 3	0.0088
NR	2.36 ± 0.05	155 ± 2	0.0615

 \mathcal{B}

$_ D^0 \rightarrow K_s^0 \pi^+ \pi^-$ Dalitz (540 fb⁻¹) $_$

Results

Assuming CP conservation

 $\begin{aligned} x &= 0.80 \pm 0.29^{+0.13}_{-0.16} \ \% \\ y &= 0.33 \pm 0.24^{+0.10}_{-0.14} \ \% \end{aligned}$

most stringent limits on x up to now Cleo, PRD 72, 012001 (2005): $x = 1.8 \pm 3.4 \pm 0.6\%$ $y = -1.4 \pm 2.5 \pm 0.9\%$

Search for CP violation

- ◆ fit parameters consistent for both samples
 → no direct CPV
- parameters |q/p| and $\phi = \arg(q/p)$ consistent with CP conservation

$$|q/p| = 0.86^{+0.30+0.10}_{-0.29-0.09}$$
 $\phi = (-0.24^{+0.28}_{-0.30} \pm 0.09)$

Conclusions

- Measurements of D-mixing at Belle from recent years as well as searches for CPV have been presented.
- In 2007 the first evidence for D-mixing found in decays to CP eigenstates.
- From time-dependent Dalitz plot analysis the most sensitive measurement of x up to now.
- CPV: no evidence found so far.
- Till the end of Belle data taking (next spring) expect to reach 1 ab^{-1}
 - b these measurements will be updated
 - > planned to analyse also other perspective decay modes

 $(\pi^+\pi^-\pi^0, K_s^0K^+K^-, K^+\pi^-\pi^0, ...)$

Backup slide ____

Statistical method

- y_{CP} and A_{Γ} can be determined from mean of the timing distributions (e.g. without fitting the data), and the error from r.m.s
- Assumptions:

b timing distribution is a convolution of exponential with some resolution function + some background

resolution function offsets of final states are the same and small

$$P(t) = p \frac{1}{\tau} e^{-t/\tau} * R_s(t) + (1-p)B(t) \quad \Rightarrow \quad < t > = p(\tau + t_0) + (1-p) < t >_b$$

$$\tau + t_0 = \frac{\langle t \rangle - (1 - p) \langle t \rangle_b}{p} = \langle t \rangle_s$$

• In lifetime difference t_0 cancels, thus if $t_0 \ll \tau$

$$y_{CP} = \frac{\langle t \rangle_{K\pi} - \langle t \rangle_{KK}}{\langle t \rangle_{KK}}$$

• Result with this method for $D^0 \to K^+ K^-, \pi^+ \pi^-$:

$$y_{CP} = (1.35 \pm 0.33_{stat}) \%$$

Backup slide _____

BELLE

::-

Systematics of $D^0 \rightarrow K^+ K^-, \pi^+ \pi^-$

source	y_{CP}	A_{Γ}
Acceptance	0.12%	0.07%
Equal t ₀	0.14%	0.08%
Mass window position	0.04%	0.003%
Signal/sideband background differences	0.09%	0.06%
Opening angle distributions	0.02%	
Background distribution $B(t)$	0.07%	0.07%
(A)symmetric resolution function	0.01%	0.01%
Selection variation	0.11%	0.05%
Binning of t distribution	0.01%	0.01%
Sum in quadrature	0.25%	0.15%

Systematic uncertainties in A_{CP}

Source	$D^0 \to K^+ K^-$	$D^0 \to \pi^+ \pi^-$
Signal counting	0.04%	0.06%
Slow pion corrections	0.10%	0.10%
A_{CP} extraction	0.03%	0.04%
Sum in quadrature	0.11%	0.12%

_ Backup slide _____

•••	
•••	

Source	Systematic error (%)
Resolution function offset difference $t_0^{\text{OFF}} - t_0^{\text{ON}}$	± 0.38
Estimation of $\langle t \rangle_b$	± 0.10
$D^0 \rightarrow K^+ K^- \pi^+ \pi^-$ background	± 0.07
Selection of sideband	± 0.05
Variation of selection criteria	± 0.30
Fitting procedure	± 0.10
Proper decay time range and binning	± 0.07
Dalitz model	± 0.01
Total	± 0.52

Backup slide ____

 Δy (%)

 ± 0.010

+0.006

-0.041

 ± 0.058

+0.003

-0.008

-0.006

+0.001

-0.025

+0.009

+0.06

-0.08

+0.10

-0.14

Systematics of $D^0 \rightarrow K^0_s \pi^+\pi^-$ Dalitz						
	Model dependenc					
				Source	Δx (%)	
	_			$M\&\Gamma$ errors	± 0.020	
	Exper	imental		$F_r = F_D = 1$	-0.031	
	Source	Δx (%)	Δy (%)	$\Gamma(q^2) = \text{const.}$	-0.051	
	Event selection	+0.076	+0.018	K-Matrix	± 0.073	
	Dalitz dan offi	-0.001 + 0.004	-0.078	No NR	-0.015	
		10.041	-0.009	No $K^*(1680)^+$	-0.003	
	Background	+0.041 -0.068	+0.077 -0.086	No $ ho(1450)$	-0.005	
	Total	+0.09	+0.08	$K_0^*(1430)$ DCS/CF	-0.103	
	Iotai	-0.07	-0.12	$K_2^*(1430)$ DCS/CF	+0.069	
				<i>K</i> *(1410) DCS/CF	-0.016	

	Systematics	of D^0	$\rightarrow K^0_{\circ} \pi^+ \pi^-$	Dalitz
--	-------------	----------	---------------------------------------	--------

Total