
Charmonium production in hot and dense matter

Péter Petreczky
Physics Department and RIKEN-BNL

- Introduction: Deconfinement and charmonium suppression in HI collisions
- In-medium interaction of heavy quarks and quarkonium properties (width and binding energy)
- Charmonium production in HI collisions : why some J/psi is produced @ RHIC ?
- Summary

Color screening in QCD and quarkonia melting

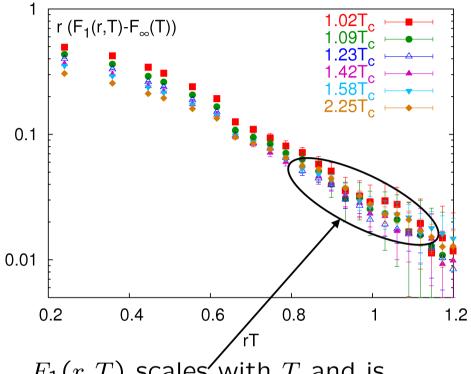
- strong color screening above deconfinement
- validity of potential models

- use quarkonia as thermometer of the matter created in RHIC
- formation time for charmonia << formation time of QGP
- very short time scale for decorrelating quark anti-quark pair

Tools for studying quarkonium at T>0

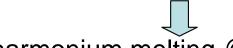
To explain the experimental data we need to know what happens to bound state at T>0:

- a) does it survive?
- b) what its in-medium properties (mass, width)?


To answer these questions we can use:

- potential model + lattice QCD (how to justify?)
- lattice calculations of Euclidean meson correlators and extraction of the spectral functions using MEM
 (the most straightforward but very difficult !)
- Effective field theory approach and pQCD
 (problematic close to the transition temperature)

Color screening in lattice QCD


RBC-Bielefeld Collaboration (2+1)f QCD, $16^3 \times 4$ lattices, $m_\pi \simeq 220$ MeV

 $F_1(r,T)$ scales with T and is exponentially screened for r > 0.8/T

Significant temperature dependence of the static quark anti-quark free energy for $r \simeq 0.3 - 0.5$ fm.

charmonium melting @ RHIC: Digal, P.P., Satz, PRD 64 (01) 094015,

Meson correlators and spectral functions

$$G(\tau, \overrightarrow{p}, T) = \int d^3x \, e^{i\overrightarrow{p} \cdot \overrightarrow{x}} \left\langle J_H(\tau, \overrightarrow{x}) J_H^{+}(0, 0) \right\rangle, \quad J_H(\tau, \overrightarrow{x}) = \overrightarrow{q}(\tau, \overrightarrow{x}) \Gamma_H q(\tau, \overrightarrow{x})$$

$$\Gamma_H = 1, \ \gamma_5, \ \gamma_{\mu}, \ \gamma_5 \cdot \gamma_{\mu}$$

 γ_5 : Pseudo – scalar(PS) $\rightarrow \eta_c$ (1S_0) 1: Scalar(SC) $\rightarrow \chi_{c0}$ (3P_0)

 γ_{μ} : Vector(VC) $\rightarrow J/\psi$ (³S₁)

 $\gamma_5 \gamma_\mu$: Axial – Vector(AX) $\rightarrow \chi_{c1}$ (³ P_1)

$$\Box G(\tau,T) = D^{>}(-i\tau)$$

$$\Box$$

Imaginary time Real time

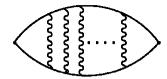
$$\frac{D^{>}(\omega) - D^{<}(\omega)}{2\pi} = \frac{1}{\pi} \operatorname{Im} D_{R}(\omega) = \sigma(\omega)$$

$$\frac{\mathrm{d}W}{\mathrm{d}\omega\mathrm{d}^{3}p} = \frac{5\alpha^{2}}{27\pi^{2}} \frac{1}{\omega^{2}(\mathrm{e}^{\omega/T} - 1)} \sigma_{V}(\omega, \vec{p}, T)$$

Experiment, dilepton rate

$$G(\tau,T) = \int_0^\infty d\omega \sigma(\omega,T) \frac{\cosh(\omega(\tau - 1/(2T)))}{\sinh(\omega/(2T))}$$

$$G(\tau, \overrightarrow{p}, T)$$

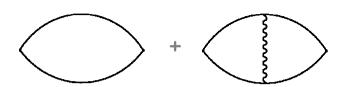


$$\begin{array}{c|c}
\text{MEM} & \longrightarrow & \sigma(\omega, \overrightarrow{p}, T)
\end{array}$$

Quarkonium spectral functions in potential models

 $\omega \sim M_{J/\psi}$, s_0 nonrelativistic

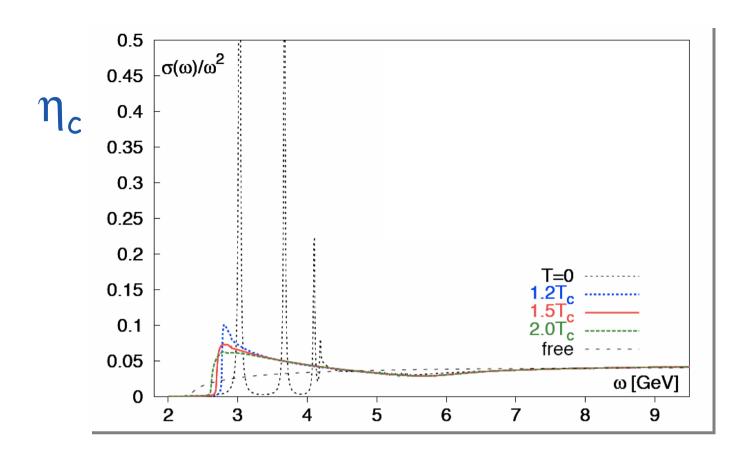
many gluon exchanges important near threshold

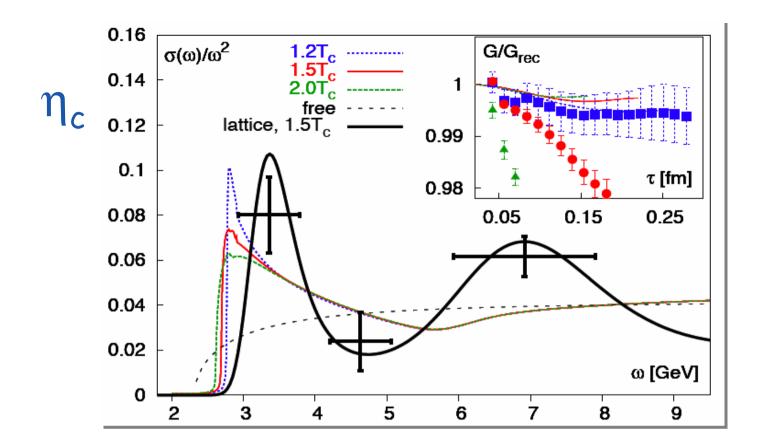

$$\left[-\frac{1}{m}\nabla^2 + V(\vec{r}) + E\right]G^{NR}(\vec{r}, \vec{r}', E) = \delta^3(\vec{r} - \vec{r}')$$

$$\sigma(E) = \frac{2N_c}{\pi} \operatorname{Im} G^{NR}(\vec{r}, \vec{r}', E)_{\vec{r} = \vec{r}' = 0}$$

S-wave

$$\sigma(E) = \frac{2N_c}{\pi} \frac{1}{m^2} \vec{\nabla} \cdot \vec{\nabla}' \operatorname{Im} G^{NR} (\vec{r}, \vec{r}', E)_{\vec{r} = \vec{r}' = 0}$$


 $\omega \gg s_0$ perturbative


$$\sigma_{pert} \cong \omega^2 \frac{3}{8\pi} \left(1 + \frac{11}{3\pi} \alpha_s \right)$$

use lattice data on the quark anti-quark free energy to construct the potential

Mócsy, P.P., PRL 99 (07) 211602, PRD77 (08) 014501, EPJC ST 155 (08) 101

- resonance-like structures disappear already by 1.2T_c
- strong threshold enhancement above free case indication of correlations

- resonance-like structures disappear already by 1.2T_c
- strong threshold enhancement above free case indication of correlations
- height of bump in lattice and model are similar
- •The correlators do not change significantly despite the melting of the bound states

Effective field theory approach for heavy quark bound states and potential models

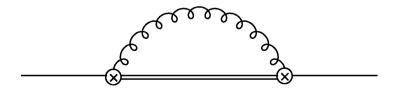
The heavy quark mass provides a hierarchy of different energy scales

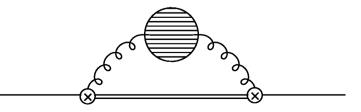
The scale separation allows to construct sequence of effective field theories: NRQCD, pNRQCD potential model appears as the 0th approximation of the pNRQCD

pNRQCD at finite temperature for static quarks

EFT for energy scale $\Delta V = (V_o - V_s), mv^2 \ll 1/r, T, m_D$

Ultrasoft quark and gluons


potential is the matching parameter of EFT!


Free field equation:
$$(i\partial_0 - \frac{-\nabla^2}{m^2} - V_s(r,T))S = 0$$

If $\Delta V \sim \alpha_s/r \ll T$, m_D there are thermal contribution to the potentials

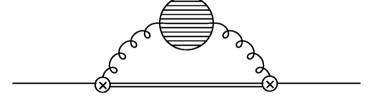
singlet-octet transition:

Landau damping:

The potential for $\ r < 1/T < 1/m_D$:

$$QCD^{-1/r} \rightarrow pNRQCD^{-T} \rightarrow pNQRCD_{HTL}^{-m_D} \rightarrow pNRQCD_{therm}^{-T}$$

$$ReV_s(r,T)$$


 $\text{Im}V_s(r,T)$

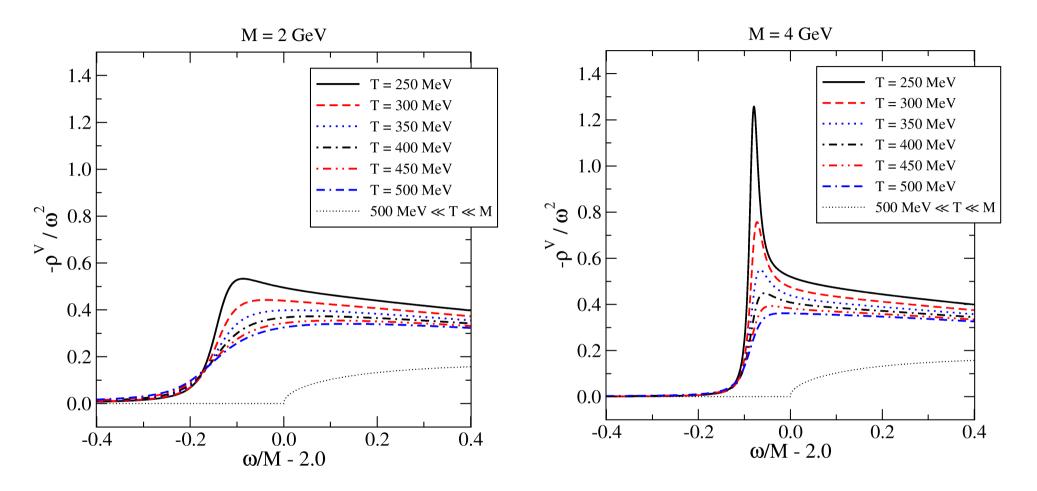
$$-C_F \frac{\alpha_s}{r}$$

$$\Delta V = V_0 - V_s$$

$$T: g^2T^3r^2 \times \frac{\Delta V}{T} \sim \alpha_s^2T^2r$$

$$g^2T^3r^2 \times \left(\frac{\Delta V}{T}\right)^2 \sim \alpha_s^3T$$

$$T: \qquad g^2T^3r^2 \times \left(\frac{m_D}{T}\right)^2$$


$$g^2T^3r^2 imes \left(\frac{m_D}{T}\right)^2$$

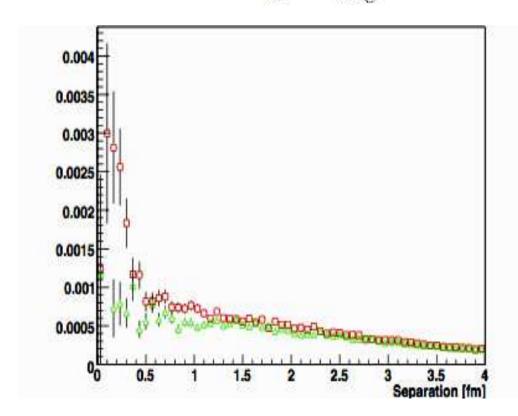
$$m_D$$
: $g^2T^3r^2 \times \left(\frac{m_D}{T}\right)^3$

$$g^2T^3r^2 \times \left(\frac{m_D}{T}\right)^2$$

Spectral functions with complex potential?

Burnier, Laine, Vepsalainen JHEP 0801 (08) 043

The imaginary part of the potential washes out the bound state peak making it a mere threshold enhancement even for b-quarks!


Large threshold enhancement is observed

Dynamical model for charmonium suppression at RHIC

Charmonium is form inside the deconfined medium (QGP formation < 1fm @ RHIC) The charmonium yield at RHIC is determined not only by the in-medium interaction of charm quark and anti-quark but also by the in-medium charm difussion (drag) Svetitsky PRD37 (88) 2484

$$rac{d\mathbf{p}}{dt} = -\eta\mathbf{p} + \xi - \nabla U$$

$$\frac{d\mathbf{r}}{dt} = \frac{\mathbf{p}}{m_c}$$

attractive force between ccbar

- 1) diffusion constant from analysis of open charm yield Moore, Teaney, PRC71 (05) 064904
- 2) the bulk matter is simulated by 2+1d hydro (*e*=*p*/3)
- 3) *U* is taken from lattice QCD
- 4) initial charm distribution from PYTHIA
- 5) not the most realistic choice of U
- 6) projecting onto quantum mechanical bound states is problematic

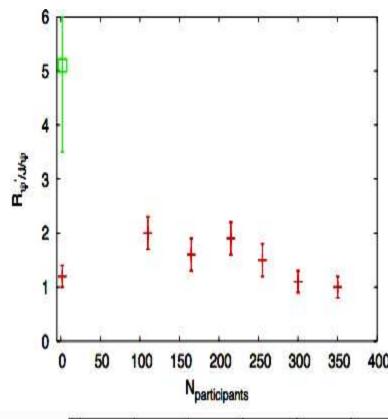
Young, Shuryak, arXiv:0803.2866 [nucl-th]

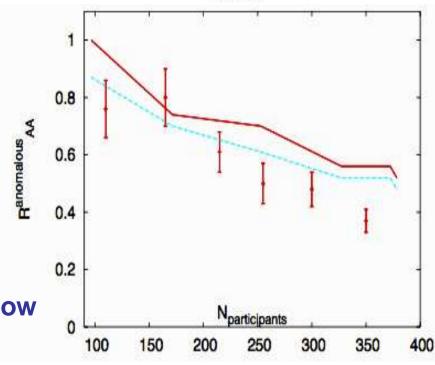
Ratio of psi' to J/psi (mock thermal equilibrium):

we form the double ratios, at two relative energies corresponding to ψ' and J/ψ masses (minus $2m_{charm}$)

$$R_{\psi'/J\psi} = \frac{f(.8 \text{ GeV})}{f_0(.8 \text{ GeV})} / \frac{f(.3 \text{ GeV})}{f_0(.3 \text{ GeV})}$$

 $R_{\psi'/J\psi} \rightarrow 1$: thermal equilibrium observed by NA50.

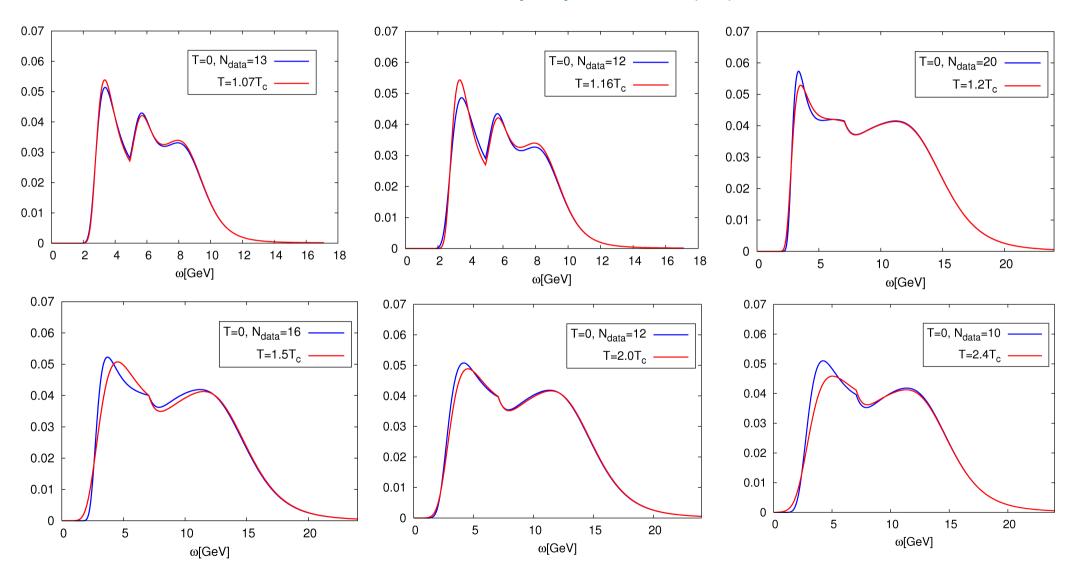

due to quasi-equlibrium and not true thermal equlibrium



$$N_{J/\psi}^{final} = N_{J/\psi}^{direct} \left[1 + R_{\psi'/\psi} \sum_i (\frac{g_i}{3}) \exp(-\frac{\Delta M_i}{T}) B_i \right]$$

Open questions:

What are pt, y distributions and anisotropic flow of J/psi from the Langevin dynamics?



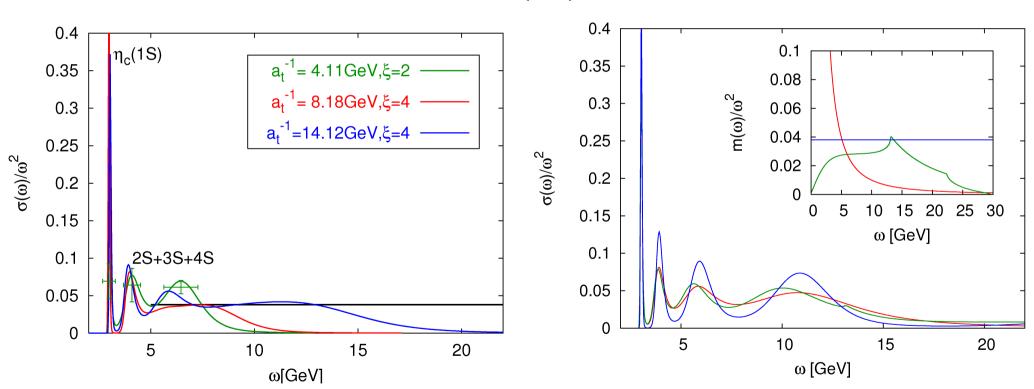
Summary

- Most likely charmonium states dissolve in QGP due thermal effects: thermal activation to octet states, screening, Landau-damping
- However, ccbar pairs remain correlated due to strong attraction at short distances (seen as threshold enhancement in the spectral functions and tiny *T*-dependence of the Euclidean correlators
- What can we learn from charmonium measurements: ?
 - attractive interaction of heavy quarks in QGP (sQGP ?)
 - diffusion of heavy quarks in QGP
 - system lifetime
- Dynamic models including the attractive interaction between quarks and diffusion of heavy quarks can in principle describe the moderate J/psi suppression observed at RHIC
 - problems are in details : exact form of interaction, cold nuclear matter effects etc
 - closer connection to fundamental QCD is needed
- Suppression @ LHC > Suppression @ RHIC > Suppression @ SPS (experimentally confirmed up to RHIC energies)

Back-up: Charmonium spectral functions at finite temperature

Jakovác, P.P., Petrov, Velytsky, PRD 75 (07) 014506

no large T-dependence but details are not resolved


Back-up: Charmonia spectral functions at T=0

Anisotropic lattices: $16^3 \times 64, \xi = 2 \ 16^3 \times 96, \xi = 4, \ 24^3 \times 160, \xi = 4$ $L_s = 1.35 - 1.54$ fm, #configs=500-930;

Wilson gauge action and Fermilab heavy quark action

Jakovác, P.P., Petrov, Velytsky, PRD 75 (07) 014506

For $\omega >$ 5 GeV the spectral function is sensitive to lattice cut-off; Strong default model dependence in the continuum region