Range corrections in proton halo nuclei

Lucas Platter

Department of Physics & Astronomy

University of Tennessee, Knoxville

& Oak Ridge National Laboratory

Collaborators: B. Acharya, E. Braaten, B. Carlsson, C. Forssén, H.-W. Hammer, C. Ji, D. Phillips, E. Ryberg

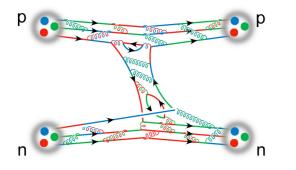
Outline

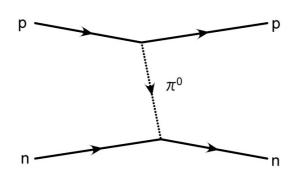
- theoretical description of effective two-body systems
 - proton halos
 - Fluorine-17
 - Boron-8
- universality in the presence of a finite effective range
- maybe: uncertainty estimates proton-proton fusion

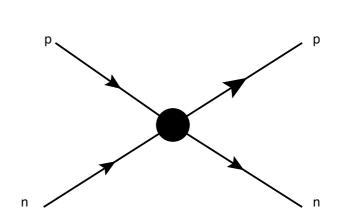
Effective Field Theory for Low-Energy Nuclear Physics

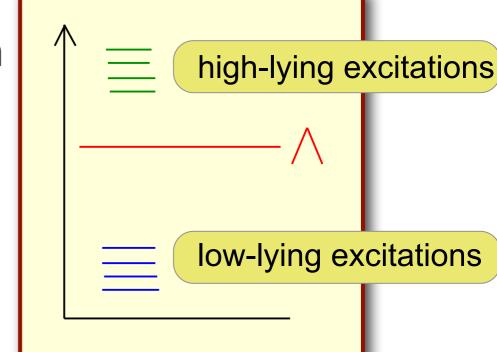
 use effective field theory (EFT) expansion to account for details of interaction

- use minimal set of degrees of freedom
 - depends on resolution scale
- exploit separation of scales:
 expand in small momentum k scale
 over large scale Λ
 - infinite # of coupling parameters









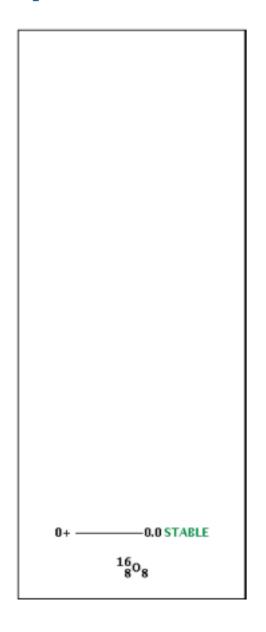
Nuclear Halos

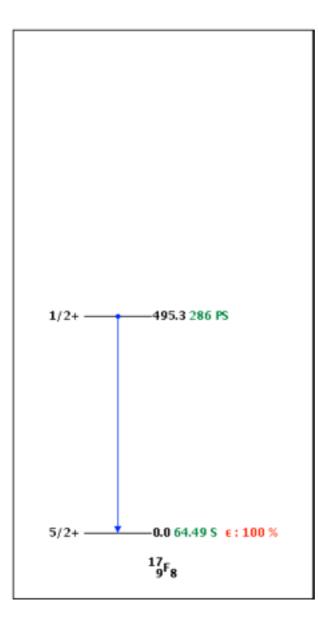
dripline phenomena include emergence of new degrees of freedom Halo: tightly bound core 19C ¹⁷**B** + weakly bound ¹Be ¹²Be spectator nucleons ⁵He

▶ 1-neutron halos considered in EFT by Bedaque, van Kolck, Hammer, Phillips, ...

What about Proton Halos?

Separation of Scales in Fluorine-17





2 stable weakly-bound states

$$S_p = 600.27 \,\mathrm{keV}$$

$$S_n = 16800 \,\mathrm{keV}$$

 Oxygen-16 tightly bound lowest lying excitation at ~6 MeV

⇒ Excited State of Fluorine-17 is S-wave Proton Halo

Construct Halo EFT for excited state in 17F (Ryberg, Hammer, Forssen & LP arXiv 2015)

- simple Lagrangian that includes only excited state dynamics
- core and proton treated as pointlike particles

$$\mathcal{L} = \sum_{k=0,1} \psi_k^{\dagger} \left[i \mathcal{D}_0 + \frac{\mathbf{D}^2}{2m_k} \right] \psi_k + d^{\dagger} \left[\Delta + \nu \left(i \mathcal{D}_0 + \frac{\mathbf{D}^2}{2M_{\text{tot}}} \right) \right] d$$
$$- g \left[\psi_1^{\dagger} \psi_0^{\dagger} d + \text{h.c.} \right]$$

We take Coulomb into account non-perturbatively

Coulomb Interaction

 We include the Coulomb interaction by using the QM Green's function

$$\langle \mathbf{r}|G_{\rm C}(E)|\mathbf{r}\rangle = \int \frac{\mathrm{d}^3 p}{(2\pi)^3} \frac{\psi_{\mathbf{p}}(\mathbf{r})\psi_{\mathbf{p}}^*(\mathbf{r}')}{E - \mathbf{p}^2/(2m_{\rm R}) + i\varepsilon}$$

Coulomb wave functions are partial wave decomposed

$$\psi_{\mathbf{p}}(\mathbf{r}) = \sum_{l=0}^{\infty} (2l+1)i^{l} \exp(i\sigma_{l}) \frac{F_{l}(\eta, \rho)}{\rho} P_{l}(\hat{\mathbf{p}} \cdot \hat{\mathbf{r}})$$

 Feynman rules have to be adjusted to take this feat into account

Input Parameters

 Use binding energy and asymptotic normalization coefficient (ANC) A for renormalization

$$w_l(r) = AW_{i\eta, l+1/2}(2\gamma r)$$

- this way, fix Z-factor and pole position of halo propagator
- sometimes: observables don't change from one order to another

$$\mathcal{Z} \propto rac{\pi}{m_{
m R}^2 [\Gamma(1+k_C/\gamma)]^2} A^2$$

Charge Radius of excited state of ¹⁷F

Feynman diagrams lead to simple expressions

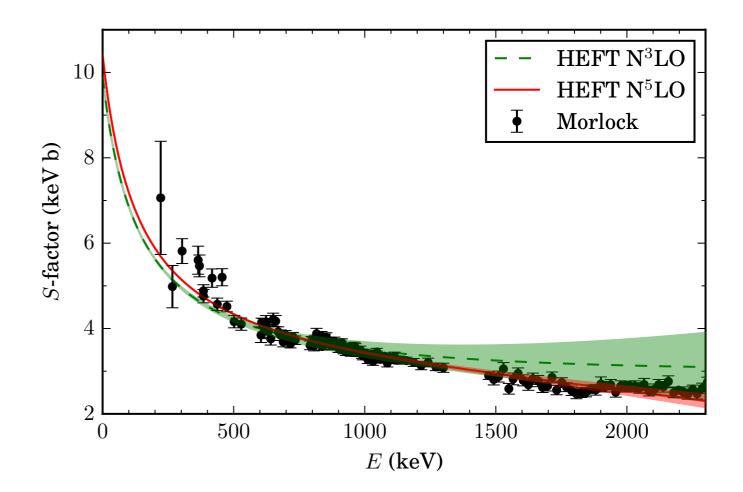
$$i\Gamma_{\mathrm{LO}}^{0}(\mathbf{Q}) = ieZ_{\mathrm{core}} \int \mathrm{d}^{3}r(0|G_{\mathrm{C}}(-B)|\mathbf{r}) \exp(if\mathbf{Q}\cdot\mathbf{r})(\mathbf{r}|G_{\mathrm{C}}(-B)|0)$$
 $+\left[(f \to 1-f), (Z_{\mathrm{core}} \to 1)\right]$
 $i\Gamma_{\mathrm{NLO}}^{0} = i\nu e(Z_{\mathrm{core}} + 1).$

 Result for charge radius (relative to core) using ANC and S_p

$$r_{\rm C,NLO} = (2.20 \pm 0.04 \; ({\rm EFT}) \pm 0.11 \; ({\rm ANC})) \; {\rm fm}$$

Determine ANCs from EFT

- fit ANC (Z-factor) to experimental data
- obtain ANCs with error estimate for different orders

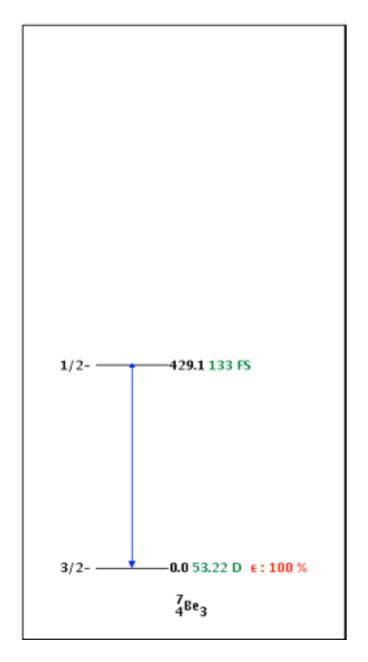


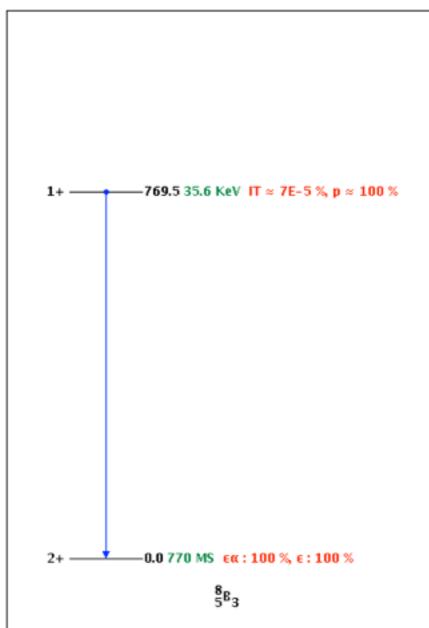
$$A = \begin{cases} (76.9 \pm 4.3 \text{ (fit)} \pm 7.7 \text{ (norm.)}) \text{ fm}^{-1/2}, \text{ N}^{3}\text{LO} \\ (78.9 \pm 4.8 \text{ (fit)} \pm 7.9 \text{ (norm.)}) \text{ fm}^{-1/2}, \text{ N}^{5}\text{LO} \end{cases}$$

$$S = \begin{cases} (9.9 \pm 0.1 \text{ (fit)} \pm 1.0 \text{ (norm.)}) \text{ keV b , N}^3\text{LO} \\ (10.4 \pm 0.1 \text{ (fit)} \pm 1.0 \text{ (norm.)}) \text{ keV b , N}^5\text{LO} \end{cases}$$

compares well with Huang et al. and Gagliardi et al.

Scale Separation in Boron-8 (Ryberg, Forssen, Hammer & LP EPJA 2015)





Boron-8 p-wave proton halo

$$S_p = 137.5 \,\mathrm{keV}$$

$$S_n = 13020 \,\mathrm{keV}$$

▶ relevant for nuclear astrophysics → solar neutrinos

Setting up the EFT

Two Spin Channels (S=1 & S=2)

$$\mathcal{L} = p_{\sigma}^{\dagger} \left(i D_{t} + \frac{\mathbf{D}^{2}}{2m} \right) p_{\sigma} + c_{a}^{\dagger} \left(i D_{t} + \frac{\mathbf{D}^{2}}{2M} \right) c_{a}
+ \tilde{c}_{\sigma}^{\dagger} \left(i D_{t} + \frac{\mathbf{D}^{2}}{2M} - E^{*} \right) \tilde{c}_{\sigma} + d_{\alpha}^{\dagger} \left[\Delta + \nu \left(i D_{t} + \frac{\mathbf{D}^{2}}{2M_{\text{tot}}} \right) \right] d_{\alpha}
- g_{1} \left[d_{\alpha}^{\dagger} \mathcal{C}_{jk}^{\alpha} \mathcal{C}_{a\sigma}^{j} c_{a} \left((1 - f) i \overrightarrow{\nabla}_{k} - f i \overleftarrow{\nabla}_{k} \right) p_{\sigma} + \text{h.c.} \right]
- g_{2} \left[d_{\alpha}^{\dagger} \mathcal{C}_{\beta k}^{\alpha} \mathcal{C}_{a\sigma}^{\beta} c_{a} \left((1 - f) i \overrightarrow{\nabla}_{k} - f i \overleftarrow{\nabla}_{k} \right) p_{\sigma} + \text{h.c.} \right]
- g_{*} \left[d_{\alpha}^{\dagger} \mathcal{C}_{jk}^{\alpha} \mathcal{C}_{\sigma\chi}^{j} \tilde{c}_{\chi} \left((1 - f) i \overrightarrow{\nabla}_{k} - f i \overleftarrow{\nabla}_{k} \right) p_{\sigma} + \text{h.c.} \right] + \dots ,$$

- p is proton field,
 c is spin 3/2 ground state core field,
 c~ spin-1/2 excited state core field
- $g=g_1^2+g_2^2$ always appear as sum; only as one parameter

Renormalization conditions

 We use asymptotic normalization coefficients and binding/ excitation energies

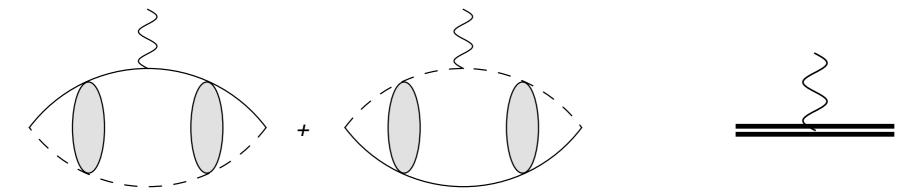
$$A_1^2 + A_2^2 = 2\gamma^2 \Gamma (2 + k_{\rm C}/\gamma)^2 \left[-r_1 + \frac{2k_{\rm C}}{m_{\rm R}} \frac{\mathrm{d}}{\mathrm{dE}} \left(h_1(\eta) + \frac{g_*^2}{g^2} h_1(\eta_*) \right) \right|_{E=-B} \right]^{-1},$$

$$A_*^2 = 2\gamma_*^2 \Gamma (2 + k_{\rm C}/\gamma_*)^2 \left[-\frac{g^2}{g_*^2} r_1 + \frac{2k_{\rm C}}{m_{\rm R}} \frac{\mathrm{d}}{\mathrm{dE}} \left(\frac{g^2}{g_*^2} h_1(\eta) + h_1(\eta_*) \right) \Big|_{E=-B} \right]^{-1}$$

also allows us to extract also the effective range

Charge Radius

- charge radius will get measured (Noertersheuser, Mueller, ...)
- Feynman diagrams for Charge radius relative to Beryllium-7



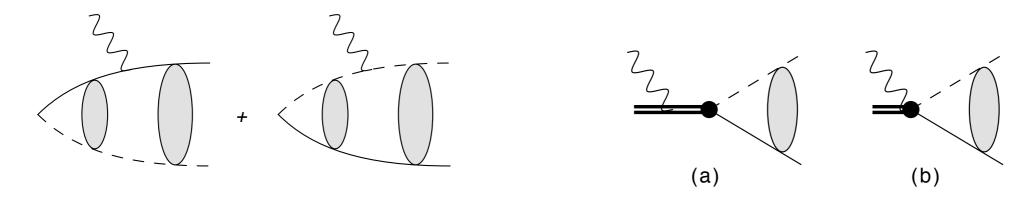
parameters fixed from S_p and ab initio ANCs

$$r_{\rm C}^2 = \begin{cases} (2.56 \pm 0.08 \text{ fm})^2 & (\text{Nollett ANCs}) \\ (2.50 \text{ fm})^2 & (\text{Navrátil ANCs}) \\ (2.41 \pm 0.18 \text{ fm})^2 & (\text{Tabacaru ANCs}) \end{cases}$$

 Beryllium radius added in quadrature (comp w/ Pastore -> (2.6 fm)²

Capture reaction

We can also evaluate capture diagrams

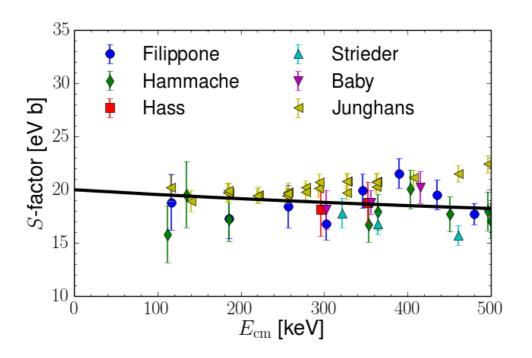


and obtain the threshold S-factor

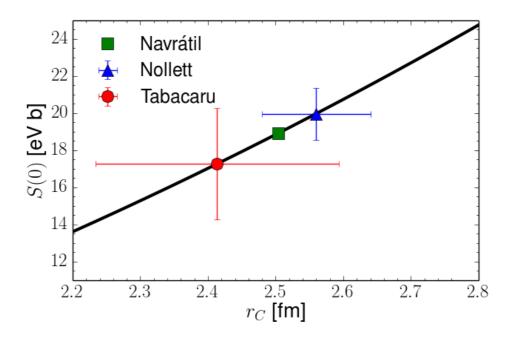
$$S(0) = \begin{cases} (20.0 \pm 1.4) \text{ eV b} & (\text{Nollett ANCs}) \\ 18.9 \text{ eV b} & (\text{Navrátil ANCs}) \\ (17.3 \pm 3.0) \text{ eV b} & (\text{Tabacaru ANCs}) \end{cases}$$

S-factor (compare Zhang, Nollett & Phillips 2014)

good agreement w/ experiment

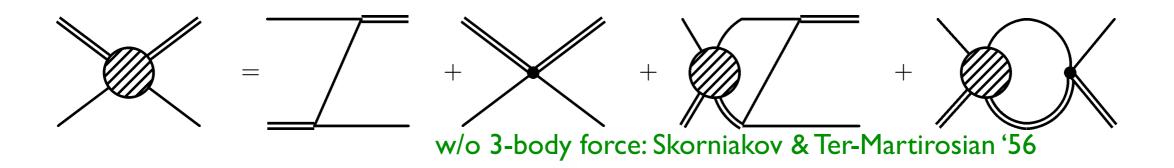


universal correlation btw radius and S-factor



A slightly different topic: NLO universality

STM equation contains the Efimov effect



- in QFT find that predictions require 3-body force (Bedaque, Hammer, and van Kolck 1999)
- Efimov: New type of universality: discrete scale invariance, scattering length and one three-body input determine everything else

Universal relations at leading order

- knowledge of one feature gives info on all others:
 - binding energies in the unitary limit

$$E_{T,n} \longrightarrow \lambda^{-2n} \kappa_*^2/m$$

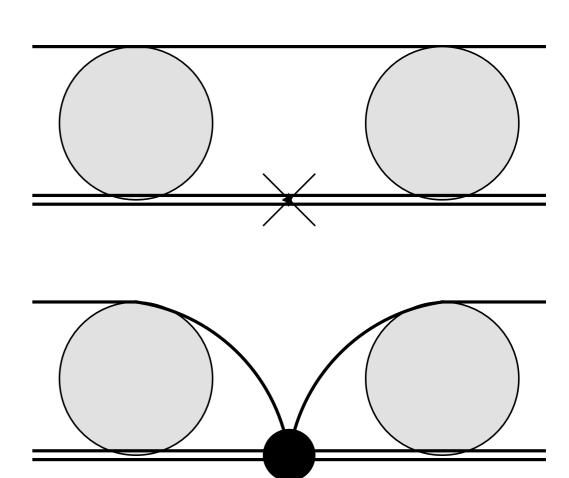
→ recombination features, e.g. recombination maxima

$$a_{-,n} \longrightarrow \theta_- \lambda^n \kappa_*^{-1}$$

Including the effective range

Hammer&Mehen 2001, Bedaque et al. 2002, Ji&Phillips&LP 2011

- use perturbation theory to include effective range
- find that new counterterm is required when variable scattering length is considered
- regulator dependence of new 3-body force can be derived explicitly



Universal relations at next-to-leading order (Ji, Braaten, Phillips & LP PRA 2015)

recombination features can be expressed as

$$a_{i,n} = \lambda^n \theta_i \kappa_*^{-1} + (J_i - n\sigma) r_s$$

- ▶ J_i is non-universal, however (J_i-J_j) is universal
- relation above can be modified to give ratio of 2 features as function of 2 other feature

Running Efimov Parameter

 form of NLO 3-body force suggest running 3-body parameter

$$\bar{\kappa}_*(Q,a) = (Q/\kappa_*)^{-\gamma r_s/a} \kappa_*$$

 leads to Renormalization-Group improved universal relations

$$a_{i,n} = \lambda^n \theta_i (\lambda^n |\theta_i|)^{-\gamma r_s \kappa_* / (\lambda^n \theta_i)} \kappa_*^{-1} + \tilde{J}_i r_s$$

 can be written as equation for ratios depending on 2 known ratios

Benchmarking the relations

- Compare the universal relations to calculations that employ finite range interaction
- Deltuva: Momentum space calculations with short-range separable interaction
- Schmidt, Rath & Zwerger: Two-channel model that with 2 parameters and a form factor that gives

Deltuva PRA 2012

$$(a_{-,n+1}/a_{-,n})/\lambda$$

n	0	1	2	3	4
Deltuva 2012	0.7822	0.9665	0.9976	0.9999	1.0000
NLO	<u>0.7822</u>	<u>0.9665</u>	0.9975	0.9998	1.0000
RG-NLO	<u>0.7822</u>	<u>0.9665</u>	0.9975	0.9998	1.0000

Schmidt, Rath & Zwerger

$(a_{-,n+})$	$_{1}/a_{r}$	$_{i})/\lambda$
$\langle , n \rangle$	- /, , ,	0 / /

$(a_{*,n})/$	λ
	$(a_{*,n})/$

n	0	1	2
Schmidt et al.	0.753	0.962	0.998
NLO	<u>0.753</u>	<u>0.962</u>	0.997
RG-NLO	<u>0.753</u>	<u>0.962</u>	0.997

0	1	2
0.175	1.764	1.029
-8.1	1.150	1.032
0.0002	1.206	1.034

Schmidt et al.	1.008	0.998	0.9998
NLO	<u>1.008</u>	<u>0.998</u>	0.9998
RG-NLO	<u>1.008</u>	<u>0.998</u>	0.9998

0.757	0.983	1.001
-0.431	0.986	1.002
0.240	0.986	1.002

Summary

- Proton Halos are more fine-tuned
 - weakly bound systems in the presence of the repulsive Coulomb interaction
- obtain input information from ab initio calculations
- RG improvement corresponds to some iteration of the range
- new RG improved universal relations at NLO