Nuclear Astrophysics Town Meeting

Working Group 1

Nuclear Theory for Nuclear Astrophysics

Conveners: Matthias Hempel, Nils Paar, Stefan Typel

Outline of Session

• Overview

• Individual Contributions

- o Dimiter Balabanski, Catalin Matei
- \circ Horst Lenske
- \circ Gabriel Martinez-Pinedo
- \circ Micaela Oertel
- \circ Nils Paar
- Tomas Rodriguez
- \circ Armen Sedrakian
- \circ Aurora Tumino
- \circ Meng-Ru Wu
- 0...

• Discussion

Nuclear Theory

• Areas of Application

- \circ Equation of State of Dense Matter
- Properties of Atomic Nuclei
- Nuclear Reactions

• Methods

- \circ ab initio approaches
- \circ interacting shell model
- \circ energy density functionals

• Interface to Experiment

- \circ error analysis of predictions
- \circ constraints for models
- \circ correlation of quantities
- \circ sensitivity to input
- \circ transfer of results

Methods for Structure Calculations

• Ab Initio Approaches

- use of realistic interactions (potential models, meson exchange, chiral forces, RG evolved, . . .)
 large variety of many-body methods (AMD/FMD, BHF/DBHF, SCGF, CBF, VMC, GFMC, AFDMC, NSCM, CC,
 - MBPT, χ EFT, nuclear lattice EFT, . . .)

• Interacting Shell Model

specific model space, nuclei close to magic shell closures
 tailored interactions

• Energy Density Functionals

- phenomenological interactions
- mostly based on mean-field models (Skyrme, Gogny, relativistic)
- \Rightarrow Nuclear Structure and Nuclear Matter

Interactions

• In Ab Initio Calculations

- \circ often fitted to NN scattering/properties of few-nucleon systems
- \circ two-body forces well constrained in vacuum
- \circ three-body forces much less constrained, but essential
- \circ two- and three-body forces not independent
- \circ connection to QCD?
- \circ error estimates in systematic approaches
- \circ effects of short-range repulsion \Rightarrow high-momentum components
- limitations? applicability (density, mass number, ...)

• General Problems

- \circ in-medium modifications
- \circ uncertainties for hyperon-nucleon, hyperon-hyperon interactions,
 - in particular at high densities (\Rightarrow neutron star properties)
- \circ advantages/disadvantages of zero-range interactions

Equation of State of Dense Matter I

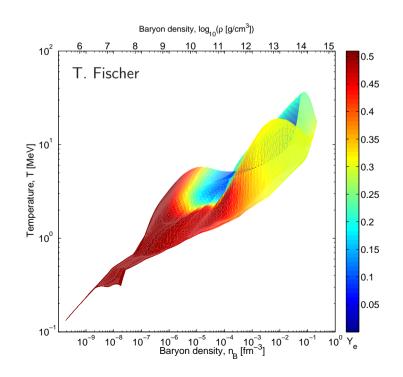
• Neutron Star Matter

 \circ large number of models

 \circ many excluded by $2~M_{\odot}$ neutron star maximum mass constraint

• General Purpose Equations of State

- \circ cover large range in temperature, density, isospin asymmetry
- \circ development of unified models
 - single theoretical approach for homogeneous and inhomogeneous matter
 - relevant degrees of freedom?


(clusters, hyperons, quarks, . . .)

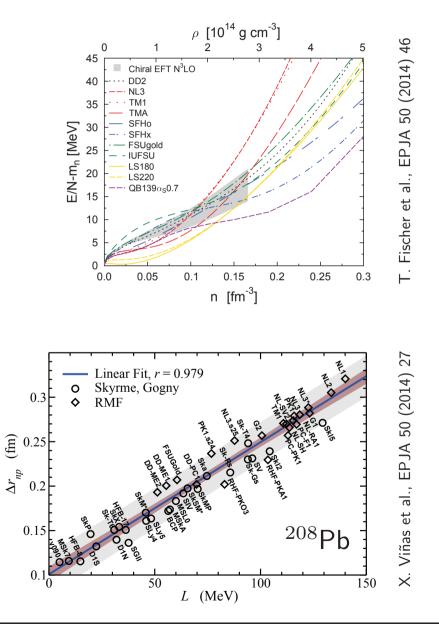
phase transitions

• future extensions

- \circ consistent treatment of pairing
- \circ calculation of transport properties

o . . . ?

Equation of State of Dense Matter II


• Constraints

stiffness: flow in heavy-ion collisions, maximum neutron star mass > 2 M_☉,
neutron matter properties from theory
density dependence of symmetry energy
clustering in low-density matter
...

• Correlations

- \circ nuclear matter parameters (K, J, L)
 - $\Leftrightarrow \mathsf{properties} \ \mathsf{of} \ \mathsf{nuclei}$
 - neutron skin thickness
 - $-\ensuremath{\text{--pygmy}}$ and giant resonances
 - dipole polarizability

model dependence?

Nuclear Structure

• Most Relevant Quantities for Astrophysics

- \circ masses, binding and separation energies
- properties of excited states (single-particle, collective)
- \circ strength functions
- level densities

• Important Aspects

- \circ correlations and clustering
- \circ deformation
- \circ beyond mean-field effects
- $\circ\,$ restauration of symmetries
- \circ input for reaction models

• Goals

- \circ global, unified description of structure
- \circ quantification of errors
- \circ reliable extrapolation to exotic nuclei

Nuclear Reactions

• Applications

- \circ Big Bang and stellar nucleosynthesis, various processes (s, r, p, rp, ν p, fission)
- \circ indirect methods
- \circ cosmochronometry

• Specific Topics

- \circ radiative capture/dissociation reactions
- weak interaction reactions, half-lives, neutrino flavor oscillation, sterile neutrinos?
- \circ reliable microscopic theory of fission?
- \circ applicability of statistical methods
- \circ optical potentials
- thermal and medium effects (e.g. electron screening)

• Goals

- \circ consistent description of structure and reactions
- \circ explanation of origin of elements and abundances
- \circ understanding of energy sources and transformation in cosmic history

Indirect Methods

• Reaction Theory

 \circ essential for analysis \Rightarrow determination of wanted reaction cross sections from measured cross sections

• Methods

- Asymptotic Normalization Coefficient (ANC) Method
 - effects of initial/final state interaction?
- \circ Coulomb Dissociation (CD) Method
 - higher-order & relativistic effects
 - Coulomb-nuclear interference
- Trojan Horse Method (THM)
 - improvement of reaction theory

Beyond Nuclear Theory

• Theory for Astrophysical Simulations

- hydrodynamics
- \circ general relativity
- o . . . ?

• Data Repositories

- o equations of state: CompOSE (compose.obspm.fr)
- o properties of nuclei, reaction rates: BRUSLIB (www.astro.ulb.ac.be/bruslib/)
- o reaction rates: NACRE I, II (pntpm3.ulb.ac.be/Nacre/ &
 www.astro.ulb.ac.be/nacreii/), KADoNiS (www.kadonis.org),
 web pages of T. Rauscher (nucastro.org), ...

need for new European initiatives?

• Computational Resources

```
\circ collaboration with simulation labs (e.g. KIT)
```

ο...