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2014 Town meetings on each major section:

• Low energy nuclear physics

• Nuclear Astrophysics

• Hadron and Heavy Ion QCD

• Fundamental Symmetries and Neutrinos

• Education and Innovation

 Nuclear Astrophysics is a major subfield of

Nuclear science

2012 Town meeting on Nuclear Astrophysics

 Organized by Joint Institute for Nuclear

Astrophysics (JINA)

 Brought  together 150 Nuclear scientists 

astrophysicists, and astronomers

in wake of NP2010 and Astro2010 Decadal

Surveys: unique perspective

http://science.energy.gov/np/nsac/

joint
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Urgent need for nuclear physics to explain all this

(+ Source models and chemical evolution to link to full body of observations)

 Opportunity to unravel the origin of the elements
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5

Adapted  from Frank Timmes

rp-process

p-process

r-process

Neutron star crust

process

Supernova EC process

s-process i-process

np-process

Stellar fusion



JINA-CEE

Nuclear Physics Discoveries 
Are an Essential Part of this Revolution 

5

Adapted  from Frank Timmes

rp-process

p-process

r-process

Neutron star crust

process

Supernova EC process

s-process i-process

np-process

Stellar fusion

Stable beams

Challenge: Small cross sections

of charged particle reactions

 hardly any reaction is measured

at relevant energy

Solutions:

- Higher Intensity

- New Techniques (incl. Underground)

- Theory

Radioactive beams:

Challenge: Production

 hardly any reaction is measured

Solutions:

- Higher Intensity (FRIB)

- Advanced Equipment

- Theory

Challenges are being addressed with FRIB, university lab upgrades, 

new equipment, theory  huge opportunities for next decade
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 How do stars mix, rotate, and 

generate magnetic fields? 

 Which stars go supernova?

(How do stars loose mass)   

What are the elements stars make?

As a function of metallicity?

The first stars?

 A new process?  i-process

 What were the first stars like? 

 What is the sun’s metallicity?

Woodward
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Stable beam experiments 

are essential to understand stars

NP2010, Cyburt
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Approach: 

Recoil Separator

St. George at Notre Dame

Approach: Underground

LUNA

CASPAR 

at Sanford Lab

Approach: Higher Intensity

LENA upgrade

at TUNL

New St Ana accelerator

at Notre Dame
LANSCE

And planned HIgS upgrades

Theory:
• Reaction theory to analyze

data and extrapolate

• Ab-initio based rate predictions

Approach: New Techniques
• Summing/Coincidence Detection

(SUN@NSCL, LENA@TUNL)

• Optical TPC at HIgS

• STAR Bubble Chamber at ANL (JLab)

• Trojan Horse Technique

Stable beam experiments 

are essential to understand stars

NP2010, Cyburt
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Woodward
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Lin 2014

Hydrogen entrainment leads to 13C(a,n) driven

neutron capture process (i-process)

Dardelet et al. 2014

Bertolli et al. 2013

60 70

1.5

2.0

2.5

Mass number

[X
/F

e
]

Explains abundance signatures? 

CS31062-050

CEMP s+r

Nuclear physics for s/i processes:
• (a,n) rates (stable beam experiments)

• n-captures on stable nuclei: LANSCE

• n-capture rates 1-6 units from stability

• Develop (d,p) and other 

surrogate techniques

• NEED REACTION THEORY !!

Need a multi-facility approach

(stable beams, neutron beams, 

and radioactive beams, FRIB 6-12 MeV)

Pioneering (d,p) work at HRIBF

Kozub et al. 2012 

130Sn(d,p)
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What is the Origin of Elements Beyond Selenium? 
What is (are)  the r-process (es)
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Neutron Star Mergers?

- Dynamic ejecta

- Winds

Supernovae?

 n-wind

- MHD jets

Abundance signatures reveal astrophysical environment

 Need nuclear physics to extract that information

and to validate models

 Recent progress in removing astrophysical ambiguity

enables better definition of required nuclear physics

and increases need for nuclear data to test ideas

(Hix et al.)

(Rosswog et al. )
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Theory:
• Guides Experiment

• Provide less critical data

• Provide data out of reach

• Environmental corrections

Brett et al. 2012 Sensitivity to Masses
Z

N

FRIB reach

CARIBU reach
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H/He induced Stellar Reactions on 
Unstable Neutron Deficient Nuclei 
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X-ray bursts

• What do 3000 bursts in MINBAR

archive tell us about neutron star?

• How can we understand the wide

variety of burst behaviors

Thorne Zytkov Objects

• Do they exist? 

• What are their abundance

signatures?

First Stars

• What were their properties?

• What are their abundance

signatures? ( Massive Surveys)

• How much did they contribute

to re-ionization of the cosmos?

Novae

• How much radioactivity do they eject?

• How is white dwarf matter mixed in? 

• Are there exotic types of explosions?

( LLST)

rp-process

rp-process

rp-process

rp-process

Supernovae

p, np-processes

• What is the contribution

to the origin of the elements? 

• Why do observations disagree

with models?
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The Quest to Measure Reaction Rates of 
Unstable p-rich Nuclei
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Indirect: g-spectroscopy

Indirect: particle-spectroscopy

HELIOS@ANL

ISLA@FRIB

Transfer reactions:

• JENSA Gas Jet (CSM)

• TWINSOL@Notre Dame

• (d,n)@RESOLUT FSU

• Spectrometer plans:

• TUNL Tandem

• FSU

• ANASEN (FSU, LSU)

• AT-TPC@NSCL

Beta decay:

• b-p at TAMU and NSCL

Direct measurements (p,g)
Recoil separators: 

• DRAGON/HRIBF DRS … 

• SECAR@NSCL/FRIB

Summing g-ray detection (SUN)

Design by G. Berg

Notre Dame
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FRIB will provide 

vastly expanded rp-process reach

for all these approaches
(Lower rp-process: stable beam opportunities)

Reaccelerated

Beams <3 MeV/u

(Europe: REX-ISOLDE, TSR

FAIR ring deceleration)Reaccelerated

Beams <6-12 MeVu

(Europe: HIE-ISOLDE,

SPIRAL)

Fast Beams

(Europe: FAIR)
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How do Core Collapse Supernovae explode? 
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 What is the supernova mechanism? 
 What is the n and gravitational wave signal?
 What elements are produced?
 Which stars go supernova? GRB?

Charge Exchange Reactions 
at ~100 MeV/u can probe the collapse driving

electron capture reactions on nuclei

 Can validate nuclear theory

(theory developments are urgently needed)
Nuclear Equation of State
is essential for explosion mechanism and 

neutrino processes

• Neutron skin related measurements

• Nuclear masses

• Heavy Ion Collisions

• Nuclear Theory

56Ni(p,n)@NSCL
(Sasano et al. 2011)

Astrophysical Models
• 3D Modeling Seems Essential

• Prospect for solving computational 

challenges are good  need nuclear 

physics urgently

Hammer et al. 2010
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 What are the properties of cold dense

matter? What is its maximum density? 

 How can we determine radii, masses,

and crust properties of neutron stars from observations?

 What powers superbursts? 

 Origin of burst oscillations? 

 Are neutron star mergers GRBs? r-process site? 

Multi-Messenger Observations
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Brown&Cumming 2009

Unknown heat source near surface
was added

Superfluid
neutrons?

Core?

Brown & Cumming 2009MXB1659-29

Pasta? 

Brown & Cumming 2009
Horowitz et al. 2015

Cooling transients probe deeper crust
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12C+12C Fusion:

Step 1:

Bursts (rp-process)

or Superbursts

(Carbon burning)

Step 2:

Electron Capture

with increasing depth

 heating

Urca Cooling

at certain depths

Step 3:

Beyond n-drip: 

EC, n-capture, fusion

 heating

Strieder 2008
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12C+12C Fusion:

Step 1:

Bursts (rp-process)

or Superbursts

(Carbon burning)

 Need stable beam

experiments
Step 2:

Electron Capture

with increasing depth

 heating

Urca Cooling

at certain depths

Step 3:

Beyond n-drip: 

EC, n-capture, fusion

 heating

Need for neutron rich A=12-108 nuclei

Masses

Neutron drip

EC/b strengths

Fusion reactions

Need FRIB with HRS

Need nuclear theory for n-rich nuclei

with uncertainties!

Erler et al. 2012

Strieder 2008
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Probing the Nuclear Equation of State
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Lattimer and Lim 2013

Symmetry energy at saturation density
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Nuclear masses
 Most reliable?

BUT: little constraint in L

 Need something else 

GDR
 model dependent

 similar constraint

to masses

Heavy Ion Collisions
 Model dependent

but can get beyond r0Neutron Skin

 Important

• Collective E/M 

modes

(e.g. PDR, …)

• PREX

• Dipole polarizability

• Anti-protonic atoms

• Proton scattering

Neutron Stars
 Also depend on larger r

 Use for concordance

check, learn from

discrepancies

Theoretical Constraints
Chiral Effective Field Theory

Nice concordance – but what does it mean? 

Need to understand systematic errors and model dependencies !!

Lattimer and Lim 2013

Symmetry energy at saturation density
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Centers 
are important for interdisciplinary research

17

JINA - JINA
JINA - Non JINA

Non JINA - Non JINA

The Joint Institute for Nuclear Astrophysics (JINA)
• Dedicated center for Nuclear Astrophyiscs

• NSF Physics Frontiers Center since 2003; just renewed

• Bridges field boundaries 

• International Research network, exchange, workshops, schools, data and codes

Institute for Nuclear Theory (INT)
• Serves the nuclear theory community

• DOE supported

• Focus on programs and summer schools

• Many programs in nuclear astrophysics

• Connects nuclear astrophysics with 

nuclear theory community
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Important Topics Skipped

• Type Ia Supernovae
• Plasma Physics Opportunities
• Links to particle physics: neutrino physics, dark matter
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Nuclear Astrophysics Recommendations
(abbreviated summary)
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1. FRIB 

• Timely completion 

• Development of key nuclear astrophysics equipment (SECAR, 

GRETA, HRS)

2. Broad program and theory

• Effective utilization of the available nuclear physics facilities, in 

particular university-based laboratories

• Strong theory support, FRIB theory center

• Focused multi-institutional collaborations that take advantage 

of new opportunities created by increased computing 

capabilities and large data science.

3. Underground accelerator facility: construction and operation

4. Interdisciplinary centers

• Support for JINA, 

• Support for data centers and compilation efforts

5. Education and Innovation
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• Exciting new open questions driven by observations:

• Era of large scale spectroscopic surveys

• Time domain capabilities – LLST, LIGO, Asteroseismology

• Unprecedented amount of X-ray data

• Exciting developments in nuclear physics

• Next generation RIB facilities

• New approaches to enable stellar reaction measurements

(Underground, Sensitive techniques, new neutron facilities)

• Microscopic theory, uncertainty estimates

• Exciting developments in modeling:

• Towards 3D modeling: Validation will become critical 

• Increased need for precise nuclear physics!

• Field has important questions to address:

• What is the origin of the elements? 

• How do stars explode? 

• What do the stars teach us about dense matter? 


