

Summary from US Nuclear Astrophysics Town Meetings Leading up to the 2015 NSAC Long Range Plan

H. Schatz NSCL Department of Physics and Astronomy JINA Center for the Evolution of the Elements Michigan State University

2015 US NSAC Nuclear Science Long Range Plan Nuclear Astrophysics

http://science.energy.gov/np/nsac/

The 2015 LONG RANGE PLAN for NUCLEAR SCIENCE

2014 Town meetings on each major section:

- Low energy nuclear physics
- Nuclear Astrophysics
- joint
- Hadron and Heavy Ion QCD
- Fundamental Symmetries and Neutrinos
- Education and Innovation
- → Nuclear Astrophysics is a major subfield of Nuclear science

2012 Town meeting on Nuclear Astrophysics

- → Organized by Joint Institute for Nuclear Astrophysics (JINA)
- → Brought together 150 Nuclear scientists astrophysicists, and astronomers in wake of NP2010 and Astro2010 Decadal Surveys: unique perspective

Input: Nuclear Astrophysics White Paper based on 2012 and 2014 Town Meetings

http://www.lecmeeting.org/whitepapers/NAP_White_Paper.pdf

Edited by: H. Schatz, M. Wiescher

Other text contributors:

Almudena Arcones Dan Bardayan Lee Bernstein **Timothy Beers** Alex Brown **Edward Brown** Carl Brune Jeff Blackmon Art Champagne Alessando Chieffi Aaron Couture Pawel Danielewicz Roland Diehl Mounib El Eid Jutta Escher **Brian Fields** Carla Fröhlich Falk Herwig Raph Hix Christian Illiadis **Bill Lynch**

Brad Meyer Gail McLaughlin **Bronson Messer** Tony Mezzacappa **Filomena Nunes** Brian O'Shea Madappa Prakash **Boris Pritychenko** Ernst Rehm Sanjay Reddy Grischa Rogachev **Bob Rutledge** Michael Smith **Tod Strohmayer Ingrid Stairs** Andrew Steiner Frank Timmes **Dean Townsley Remco Zegers** Vladimir Zelevinsky **Michael Zingale**

Observations of Stars have Revolutionized Nuclear Astrophysics

Large surveys: Millions of stars

SDSS/APOGEE AEGIS LAMOST GAIA GALAH

Observations of Stars have Revolutionized Nuclear Astrophysics

Observations of Stars have Revolutionized Nuclear Astrophysics

JINA-CEE

Nuclear Physics Discoveries Are an Essential Part of this Revolution

 \bigtriangledown

Nuclear Physics Discoveries Are an Essential Part of this Revolution

Theory:

- **3D Modeling**
- Nuclear cross section extrapolation

Big Theme:

Validation

Multi-messenger Observations

Samples of stars

- → How do stars mix, rotate, and generate magnetic fields?
- → Which stars go supernova? (How do stars loose mass)
- →What are the elements stars make? As a function of metallicity? The first stars?
- → A new process? i-process
- What were the first stars like?
- → What is the sun's metallicity?

Validation: Growing need for Pre-solar grains nuclear physics Theory:

oodward

- 3D Modeling
- Nuclear cross section extrapolation

Big Theme:

Validation

JINA-CEE

Stardust

Multi-messenger Observations

Samples of stars

- → How do stars mix, rotate, and generate magnetic fields?
- → Which stars go supernova? (How do stars loose mass)
- →What are the elements stars make? As a function of metallicity? The first stars?
- → A new process? i-process
- What were the first stars like?
- → What is the sun's metallicity?

Validation: Growing need for Pre-solar grains nuclear physics Theory:

oodward

- 3D Modeling
- Nuclear cross section extrapolation

Big Theme:

Validation

JINA-CEE

Stardust

The Quest Towards Stellar Cross Sections Measurements

Stable beam experiments are essential to understand stars

JINA-CEE

The Quest Towards Stellar Cross Sections Measurements

Approach: Underground

 \bigtriangledown

Approach: Recoil Separator

$^{3}\text{He}(\alpha,\gamma)^{7}\text{Be}$ 10-2 10-3 10^{-4} Solar $\sigma_{34}(E) (mb)$ Gamow • LUNA 10-5 Window • Seattle 10^{-6} Weizmann ▲ ERNA 10-7 NP2010, Cyburt 10-8 10-2 0.1 Relative Energy (MeV)

Theory:

- Reaction theory to analyze data and extrapolate
- Ab-initio based rate predictions

Stable beam experiments are essential to understand stars

Approach: Higher Intensity

LENA upgrade at TUNL

New St Ana accelerator at Notre Dame

LANSCE And planned HlγS upgrades

Approach: New Techniques

- Summing/Coincidence Detection (SUN@NSCL, LENA@TUNL)
- Optical TPC at HIγS
- STAR Bubble Chamber at ANL (JLab)
- Trojan Horse Technique

JINA-CEE

What is the Origin of Elements Beyond Selenium? What is (are) the r-process (es)

H/He induced Stellar Reactions on Unstable Neutron Deficient Nuclei

JINA-CEE

The Quest to Measure Reaction Rates of Unstable p-rich Nuclei

The Quest to Measure Reaction Rates of Unstable p-rich Nuclei

How do Core Collapse Supernovae explode?

- \rightarrow What is the supernova mechanism?
- \rightarrow What is the v and gravitational wave signal?
- \rightarrow What elements are produced?
- \rightarrow Which stars go supernova? GRB?

Astrophysical Models

- 3D Modeling Seems Essential
- Prospect for solving computational challenges are good → need nuclear physics urgently

Charge Exchange Reactions

at ~100 MeV/u can probe the collapse driving electron capture reactions on nuclei

→ Can validate nuclear theory (theory developments are urgently needed)

Hammer et al. 2010

Nuclear Equation of State

is essential for explosion mechanism and neutrino processes

- Neutron skin related measurements
- Nuclear masses
- Heavy Ion Collisions
- Nuclear Theory

Neutron stars and cold dense nuclear matter

Multi-Messenger Observations

- → What are the properties of cold dense matter? What is its maximum density?
- → How can we determine radii, masses, and crust properties of neutron stars from observations?
- \rightarrow What powers superbursts?
- → Origin of burst oscillations?
- → Are neutron star mergers GRBs? r-process site?

Neutron stars and cold dense nuclear matter

Multi-Messenger Observations

- → What are the properties of cold dense matter? What is its maximum density?
- → How can we determine radii, masses, and crust properties of neutron stars from observations?
- → What powers superbursts?
- → Origin of burst oscillations?
 - Are neutron star mergers GRBs? r-process site?

Neutron stars and cold dense nuclear matter

Accreting neutron stars are powerful probes but require broad range of nuclear physics

Probing the Nuclear Equation of State

Probing the Nuclear Equation of State

Need to understand systematic errors and model dependencies !!

JINA-CEE

Centers

are important for interdisciplinary research

The Joint Institute for Nuclear Astrophysics (JINA)

- **Dedicated center for Nuclear Astrophyiscs**
- NSF Physics Frontiers Center since 2003; just renewed

ASTROPHYSICS

- Bridges field boundaries
- International Research network, exchange, workshops, schools, data and codes

 \bigtriangledown

Institute for Nuclear Theory (INT)

- Serves the nuclear theory community
- DOE supported
- Focus on programs and summer schools
- Many programs in nuclear astrophysics
- Connects nuclear astrophysics with nuclear theory community

Important Topics Skipped

- Type la Supernovae
- Plasma Physics Opportunities
- Links to particle physics: neutrino physics, dark matter

Nuclear Astrophysics Recommendations (abbreviated summary)

- 1. FRIB
 - Timely completion
 - Development of key nuclear astrophysics equipment (SECAR, GRETA, HRS)
- 2. Broad program and theory
 - Effective utilization of the available nuclear physics facilities, in particular university-based laboratories
 - Strong theory support, FRIB theory center
 - Focused multi-institutional collaborations that take advantage of new opportunities created by increased computing capabilities and large data science.
- 3. Underground accelerator facility: construction and operation
- 4. Interdisciplinary centers
 - Support for JINA,
 - Support for data centers and compilation efforts
- 5. Education and Innovation

Summary

- Exciting new open questions driven by observations:
 - Era of large scale spectroscopic surveys
 - Time domain capabilities LLST, LIGO, Asteroseismology
 - Unprecedented amount of X-ray data
- Exciting developments in nuclear physics
 - Next generation RIB facilities
 - New approaches to enable stellar reaction measurements (Underground, Sensitive techniques, new neutron facilities)
 - Microscopic theory, uncertainty estimates
- Exciting developments in modeling:
 - Towards 3D modeling: Validation will become critical
 - Increased need for precise nuclear physics!
- Field has important questions to address:
 - What is the origin of the elements?
 - How do stars explode?
 - What do the stars teach us about dense matter?