quasi-monochromatic γ-ray beams in nuclear astrophysics

Peter Mohr

D-74523 Schwäbisch Hall, Germany ATOMKI, H-4001 Debrecen, Hungary

Town Meeting Nuclear Astrophysics - GSI 2016

Quasi-monochromatic and polarized y-ray beams

- excellent tool for indirect approaches:
 - γ-ray strength functions for heavy nuclei
 - parities of particular states
 - ground state radiation widths $\Gamma_{\gamma,0}$
- limited for total (X,γ) capture cross sections and resonance strengths from reverse (γ,X) reactions:
 - capture: proportional to $\sum_{i} (X, \gamma_{i})$
 - photodisintegration: proportional to $\sum_{j} (\gamma_0, X_j)$ knowledge of γ -ray branchings from other sources!
- very limited for <u>stellar</u> rates of (γ,X) reactions:
 - laboratory: target is in ground state
 - stellar: thermal equilibrium, excited states dominate!

(X,y) from reverse (y,X)?

- dominating ground state branching:
 - ¹²C(α,γ)¹⁶O: the "Holy Grail" of nuclear astrophysics (N.B.: no success at HIγS)
 - ${}^{2}H(\alpha,\gamma){}^{6}Li$: big-bang nucleosynthesis
 - triple-alpha: 2+ contribution at high temperatures (also interesting: 2-body vs. 3-body break-up)
 - almost no (p,γ) or (n,γ) for stable (γ,X) targets

- ground state branching known from elsewhere:
 - many further candidates for experiments
 - ${}^{3}H(\alpha,\gamma)^{7}Li$ ("first-day experiment" at ELI-NP)
 - but do we really need the (γ, X) data in these cases?

Some candidates (from ELI-NP presentations)

²⁴Mg(γ,α)²⁰Ne:
 Direct data (Schmalbrock/Koelle) show that most of
 the resonances in ²⁰Ne(α,γ)²⁴Mg decay via the first 2⁺
 in ²⁴Mg

 0^+ states are not accessible in (γ,α)

- what can we learn from (γ,α) data?
- 22 Ne(γ , α) 18 O: Low-lying (α , γ) resonances have been measured by $\gamma\gamma$ -coincidences; the direct ground state branching is small (Dababneh). The lowest resonance has most likely $J^{\pi} = 0^+$ (Mohr).
 - what can we learn from (γ,α) data?

Some candidates (from ELI-NP presentations)

²¹Ne(γ,α)¹⁷O:
 Direct data show that the lowest observed resonance in (α,γ) has no ground state branching (Best)

 - what can we learn from (γ,α) data?

- ¹⁹F(γ,p)¹⁸O, ¹⁹F(γ,α)¹⁵N:
 ¹⁹F has low-lying states at 110 and 197 keV. Only very few resonances have strong ground state branches (Wilmes).
 - what can we learn from (γ,α) data?

Some candidates (from ELI-NP presentations)

- (γ,α) or (γ,p) for A ≈ 75-100 for p-process:
 In this mass region total (α,γ) capture cross sections have been measured from the yield of the 2+ → 0+(gs) transition in the residual nucleus. The measured (γ,α) or (γ,p) cross section can be used to constrain the γ-ray strength function, but will be only a very minor part of the total (α,γ) or (p,γ) cross section.
 - what can we learn from (γ,α) or (γ,p) data?

Thank you very much for your attention!