

Sectoral Operational Programme "Increase of Economic Competitiveness" "Investments for Your Future"

Extreme Light Infrastructure – Nuclear Physics (ELI-NP)

Project co-financed by the European Regional Development Fund

Nuclear Physics Studies at ELI-NP

Dimiter L. Balabanski

Nuclear Astrophysics Town Meeting, GSI Feb. 16th-17th, 2016

ELI-NP HPLS

2 HPLS up to 10 PW – 6 output lines

at present the most powerful lasers are 1 PW, e.g. CETAL at Magurele (commissioned in 2015)

2 x 0.1 PW 10 Hz 2 x 1 PW 1 Hz 2 x 10 PW 0.1 Hz

ELI-NP Gamma Beam System (GBS)

NA @ ELI-NP

contribution of:

Catalin Matei
Danilo Gambacurta
Yi Xu
Ovidiu Tesileanu
Catalin Balan
Florin Negoita

Neutron stars, equation of state and dipole polarizability @ELI-NP

- -Neutron stars (NS) properties depend sensitively on the equation of state (EOS) of nuclear matter
- -EOS can affect many NS properties: mass-radius relationship, moment of inertia, cooling rates, Urca process, ...
- -It has been suggested that the slope (L) of the symmetry energy term of the EOS is closely related to the dipole polarizability α_n through the neutron skin thickness [1,2,3]

FIG. 3 (color online). Neutron skin of 208 Pb against slope of the symmetry energy. The linear fit is $\Delta r_{np} = 0.101 + 0.00147L$. PRL **106**, 252501 (2011)

ELI-NP: experimental photo-nuclear reaction facility

- The dipole polarizability is obtained from the photo-absorption cross section

$$\alpha_D = \frac{\hbar c}{2\pi^2} \int_0^\infty \frac{\sigma_{abs}}{\omega} d\omega = \frac{8\pi}{9} \int_0^\infty \frac{dB(E1)}{\omega}$$

- -Strongly dependent on the low-energy strength, e.g. Pygmy resonance (see also FIG. 2)
- -ELI-NP will provide (accurate and unambiguous) measures of E1 strength below and above the neutron-threshold -Model independent results: pure electromagnetic excitation process

[1]P.-G. Reinhard and W. Nazarewicz, Phys. Rev. C81, 051303® (2010) [2] J. Piekarewicz, Phys. Rev. C83, 034319 (2011) [3] X. Roca-Maza et al., Phys. Rev. Lett.106,252501 (2011)

Investigation of the Pygmy Dipole Resonance @ ELI-NP

Pygmy Dipole Resonance (PDR): low-lying E1 strength located around the particle threshold exhausting few percents of the EWSR [1].

Physics Letters B 436 (1998) 10-18

- ELI-NP: high-intensity, mono-chromatic and linear-polarized gamma ray beam facility:
- -Separate measure of E1 and M1: no need of model-dependent, indirect, determination of M1 strength -Wide variety of physics cases: spherical and deformed nuclei, neutron-rich, far from stability (drip-lines)
- -Complementary studies: strength below (NRF) and above (ELI-GANT) the neutron threshold
- -Model independent results: pure electromagnetic excitation process
 - [1] D. Savran et. al. Prog. Part. Nucl. Phys. 70 (2013) 210
 - [3] S. Goriely et al., Nucl. Phys. A 739 (2004) 331
 - [5] I. Daoutidis et al. Phys. Rev. C 86 (2012) 034328
- [2] S. Goriely, Phys. Lett. B 436 (1998) 10
- [4] E. Litvinova, et al., Nucl. Phys. A 823 (2009) 26
- [6] J. Piekarewicz Phys. Rev. C73 (2006) 044325

Measurements of key reactions in p-process based on ELI-NP

The p-process contains capture and photodisintegration reactions for about 2000 proto-rich and stable nuclei beyond Fe. For most of them, experimental data are not available.

- (1) In solar system abundance, Mo and Ru are produced only by p-process. It is very important to exactly determine the reaction rates around Mo and Ru from experimental measurements.
- (2) ¹⁴⁶Sm would be a p-process chronometer. The improved reaction rates of (γ,n) and (γ,α) for p-nuclei of Gd and Sm are necessary to confirm the production ratio of ¹⁴⁶Sm/¹⁴⁴Sm.

Final decompostion of the solar system abundance curve

Based on the γ-beam produced by ELI-NP and the scheduled Silicon Strip Detector array, measurements of ⁹²Mo(γ,p)⁹¹Nb, ⁹⁶Ru(γ,p)⁹⁵Tc, ⁹⁶Ru (γ,α)⁹²Mo, ⁹⁸Ru(γ,p)⁹⁷Tc, ¹⁴⁴Sm(γ,p)¹⁴³Pm, ¹⁴⁶Sm(γ,α)¹⁴²Sm, and ¹⁴⁸Gd(γ,α)¹⁴⁴Sm are proposed.

nuclear astrophysics with ELISSA

ELISSA:

- 3 rings of 12 position sensitive X3 silicon-strip detectors by Micron
- 2 end cap detectors from 4 QQQ3 segmented detectors by Micron
- 320 channels readout with GET electronics

⁷Li(γ,t)α

- reaction could still be a game changer in resolving the "Li problem"
- experimental measurements below 1.5 MeV are 30 yrs. old and disagree with theoretical predications
- higher energy measurements can restrict the extrapolation to astrophysically important energies

- goal: E1/E2 angular distributions and Sfactors below E_{cm}= 2.5 MeV
- the complete angular distributions measured with the e-TPC gas detector will allow to measure $S_{\rm E1}$ and $S_{\rm E2}$ separately and accurately

- goal: E1/E2 angular distributions and Sfactors between E_{cm}= 3 - 6.5 MeV
- higher energy data will allow more states to be included in the model and reduce the importance of the background pole which is used in the R-matrix

P-PROCESS NUCLEOSYNTHESIS FOR ¹⁸⁰Ta AND MEASUREMENTS OF THE PHOTO-NEUTRON CROSS SECTION

¹⁸⁰Ta characteristics

- ➤ Lowest natural abundancy (0.012%)
- Short-lived $(T_{1/2} = 8.15h)$ J^{II} = 1⁺ ground state (180Tag)
- ightharpoonup Very long-lived (T^{1/2} > 10¹⁵ yr) J^{π} = 9 isomeric state (¹⁸⁰Ta^m)
- ▶ 181 Ta $(\gamma,n)^{180}$ Ta and 180 Ta $(\gamma,n)^{179}$ Ta photo-disintegration reactions

Transversal section of the ELIGANT - TNH High Efficiency 4π Thermal Neutron Detector

- ✓ 20 cylindrical ³He proportional counters
 - ✓ 60% detection efficiency
- ✓ low amount of ¹⁸⁰Ta target (1mg/cm²) to be used.

NuPECC LOng Range Plan 2016-2020 - Astrophysics

- Correct prediction of the ¹⁸⁰Ta^m yield highly requires both ¹⁸¹Ta(γ,n)¹⁸⁰Ta and ¹⁸⁰Ta(γ,n)¹⁷⁹Ta cross section measurements.
- The measurements for the (γ,n) cross sections related to the p-nuclides destruction requires gamma ray beam three orders of magnitude higher than the existing ones.
- Measurements of the ¹⁸⁰Ta(γ,n)¹⁷⁹Ta reaction are foreseen in the Day 1 experiment at ELI-NP facility by using the maximum available gamma ray energy of 19 MeV.

Laser-driven nuclear astrophysics at ELI-NP

Reactions cross section and screening effect study in laser plasma for nuclear astrophysics ¹³C(⁴He,n)¹⁶O

⁷Li(d,n)⁴He-⁴He

10¹⁸ -10²⁰ at/cm³

PW laser

Production and photoexcitation of isomers

Important for stellar conditions – photon baths with temperatures ranging from 10⁸ K (He intershell) to 2-3*10⁹K (deep O-Ne layers of massive stars exploding as SNeII)

γ beam from GBS

¹⁵⁵Gd: 11/2⁻, 121 keV, 31.97ms

Concept of production and photoexcitation of an isomer ¹⁵⁵Gd with the half-life of 31.97 ms by synchronized irradiations of laser and gamma ray beams at E7

isomers	J p	E _x	Half-life
¹⁸⁹ Os ^m	9/2 ⁻	30.8 keV	5.81 h
¹⁸⁰ Ta ^m	9-	75.3 keV	> 1.2 x 10 ¹⁵ y
¹⁷⁶ Lu ^m	1-	123 keV	3.66 h
155Gd ^m	11/2	121 keV	31.97 ms
	-		
¹⁵² Eu ^m	0-	45.6 keV	9.27 y
¹¹⁵ ln ^m	1/2-	336 keV	4.49 h
¹¹³ Cd ^m	11/2	226 keV	14.1 y
	-		
⁸⁵ Kr ^m	1/2-	305 keV	4.48 h

Sectoral Operational Programme "Increase of Economic Competitiveness" "Investments for Your Future!"

