Neutrino Nucleosynthesis of radioactive nuclei in core-collapse supernovae

A. Sieverding¹, L. Huther¹, G. Martínez-Pinedo¹, K. Langanke^{1,2},A. Heger³

¹Technische Universität Darmstadt
 ²GSI Helmholtzzentrum, Darmstadt
 ³Monash Centre for Astrophysics, Melbourne

NAVI Physics Days, GSI, Darmstadt, Germany 18 Jan. 2016

Outline

Introduction

- Neutrino nucleosynthesis
- Input physics and cross-sections
- Supernova model

Results

- Production of ⁷Li,¹¹B,¹⁹F,¹³⁸La,¹⁸⁰Ta
- Radioactive nuclei

3 Conclusions and Outlook

Neutrinos are crucial for many aspects of Supernovae

- Deleptonization and Shock revival
 - Neutrino signal
 - Explosion dynamics
- 2 Neutrino driven wind
 - setting initial p/n ratio
- 3 ν process in the ejecta
 - Ejecta composition
 - Production of radioactive isotopes

Modified, from H.T. Janka

- Emission of 10⁵⁸ Neutrinos from the collapsing core
- $\langle E_{
 u}
 angle pprox 7-13~{
 m MeV}$
- $\langle E_{\nu_e} \rangle < \langle E_{\bar{\nu}_e} \rangle \le \langle E_{\nu_{\mu,\tau}} \rangle$

- Emission of 10⁵⁸ Neutrinos from the collapsing core
- $\langle E_{
 u}
 angle pprox 7-13~{
 m MeV}$
- $\langle E_{\nu_e} \rangle < \langle E_{\bar{\nu}_e} \rangle \le \langle E_{\nu_{\mu,\tau}} \rangle$
- Inverse β -decay

- Emission of 10⁵⁸ Neutrinos from the collapsing core
- $\langle E_{
 u}
 angle pprox 7-13~{
 m MeV}$
- $\langle E_{\nu_e} \rangle < \langle E_{\bar{\nu}_e} \rangle \le \langle E_{\nu_{\mu,\tau}} \rangle$
- Inverse β-decay
- Particle evaporation

- Emission of 10⁵⁸ Neutrinos from the collapsing core
- $\langle E_{
 u}
 angle pprox 7-13~{
 m MeV}$
- $\langle E_{\nu_e} \rangle < \langle E_{\bar{\nu}_e} \rangle \le \langle E_{\nu_{\mu,\tau}} \rangle$
- Inverse β-decay
- Particle evaporation
- Capture of spallation products

- The supernova shock triggers photodissociation and subsequent particle capture reactions
- ν nucleosynthesis occurs mainly in regions with sufficient neutrino fluxes but still moderate post-shock temperatures

- The supernova shock triggers photodissociation and subsequent particle capture reactions
- ν nucleosynthesis occurs mainly in regions with sufficient neutrino fluxes but still moderate post-shock temperatures
- Main candidates for neutrino nucleosynthesis: ⁷Li and ¹¹B via ⁴He(ν_x, ν'_x p/n) and ¹²C(ν_x, ν'_x p) ...

¹⁹**F** via ²⁰Ne(ν_x, ν'_x p/n)

¹³⁸La and ¹⁸⁰Ta via ¹³⁸Ba(ν_e ,e⁻) and ¹⁸⁰Hf(ν_e ,e⁻)

Neutrino Spectra from state-of-the-art SN simulations

Fischer et al. (2014)

- Detailed neutrino transport is included
- More channels for neutrino-matter interactions
- Inelastic channels reduce the average energies

NAVI Physics Days 2016

Neutrino Nucleosynthesis

Andre Sieverding

Janka et al. (2012)

- Simulations including detailed neutrino transport give new estimates for typical neutrino energies: $\langle E_{\nu} \rangle$ =8-13 MeV compared to 13-25 MeV
- Nuclear reaction data from JINA Reaclib V2.0 (2013)
- Lower neutrino energies make charged-current reactions more important
- Neutrino-nucleus cross-sections have been calculated for almost the whole nuclear chart (L. Huther 2014, PhD. Thesis)
- Where available, cross-sections have been supplemented by experimental data and/or results of shell-model calculations

Neutrino-Nucleus reaction cross sections

- Charged-current neutrino absorption
 - Transitions to bound states change the composition
 - Dominated by J = 0⁺ and J = 1⁺ transitions

- Neutral-current scattering
 - Only particle emission is relevant for nucleosynthesis
 - Mainly collective excitations at higher energies

From: Paar, Vretenar, Marketin, Ring Phys. Rev. C 77(2008) 024608

NAVI Physics Days 2016

Important reactions constrained by experiment

- ${}^{20}\text{Ne}(\nu,\nu'), {}^{20}\text{Ne}(\nu_e,e^-), {}^{20}\text{Ne}(\bar{\nu}_e,e^+)$ (Anderson et al. 1991)
- ${}^{22}\text{Ne}(\nu_e,e^-)$ (from ${}^{22}\text{Mg}$ decay, Hardy et al. 2003)
- ${}^{24}Mg(\nu,\nu'), {}^{24}Mg(\nu_e,e^-)$ (Zegers et al. 2008)
- ${}^{26}Mg(\nu_e,e^-)$ (Zegers et al. 2005)
- ${}^{138}Ba(\nu_e,e^-)$ (Byelikov et al. 2007)
- 180 Ta (ν_e, e^-) (Byelikov et al. 2007)
- ${}^{36}\text{Ar}(\bar{\nu}_e, e^+)$, ${}^{36}\text{S}(\nu_e, e^-)$ (Shell model calculations) • ${}^{4}\text{He}(\nu, *)$ (*Gazit et al., (2004), Suzuki et al. (2006)*) • ${}^{12}\text{C}(\nu, *)$ (*Woosley et al. (1990)*)

NAVI Physics Days 2016

Cross-sections supplemented by experimental data

- $^{26}Mg(\nu_{e},e^{-})$
- Strength for GT and Fermi transitions is experimentally accessible in some cases
- Forbidden transitions are added from the theoretical calculations
- Branchings are calculated based on a statistical model

NAVI Physics Days 2016

Supernova model

• Parametrization of temperature and density evolution during the explosion (Woosley et al. 1990)

•
$$T_{\text{Peak}} = 2.4 \times 10^9 \text{K} \times \left(\frac{E_{\text{expl}}}{10^{51} \text{erg}}\right)^{1/4} \times \left(\frac{R}{10^9 \text{cm}}\right)^{-3/4}$$

NAVI Physics Days 2016

Supernova model

• Parametrization of temperature and density evolution during the explosion (Woosley et al. 1990)

•
$$T_{\text{Peak}} = 2.4 \times 10^9 \text{K} \times \left(\frac{E_{\text{expl}}}{10^{51} \text{erg}}\right)^{1/4} \times \left(\frac{R}{10^9 \text{cm}}\right)^{-3/4}$$

Neutrino flux

- Exponentially decreasing neutrino luminosity
- Fermi-Dirac distribution

NAVI Physics Days 2016

Outline

Introduction

- Neutrino nucleosynthesis
- Input physics and cross-sections
- Supernova model

Results

- Production of ⁷Li,¹¹B,¹⁹F,¹³⁸La,¹⁸⁰Ta
- Radioactive nuclei

3 Conclusions and Outlook

$\bullet~15~M_{\odot}$ progenitor with solar metallicity

Nucleus	no $ u$	low energies ^a	high energies ^b
⁷ Li	0.002	0.12	1.41
¹¹ B	0.01	0.30	2.07
¹⁹ F	1.30	1.38	1.59
¹³⁸ La	0.10	0.68	1.33
¹⁸⁰ Ta*	0.47	1.26	2.27

- a) $\langle E_{
 u_e}
 angle = 9$ MeV, $\langle E_{ar{
 u}_e,
 u_X}
 angle = 13$ MeV
- b) $\langle E_{
 u_e, ar{
 u}_e}
 angle = 13$ MeV, $\langle E_{
 u_X}
 angle = 19$ MeV
- *) Only about 40% of ¹⁸⁰Ta survive in the long-lived isomeric state

$\bullet~15~M_{\odot}$ progenitor with solar metallicity

Nucleus	no $ u$	low energies ^a	high energies ^b
⁷ Li	0.002	0.12	1.414
¹¹ B	0.01	0.30	2.07
¹⁹ F	1.30	1.38	1.59
¹³⁸ La	0.10	0.68	1.33
¹⁸⁰ Ta*	0.47	1.26	2.27

Taking into account production by Cosmic Ray spallation, only about 40% of solar ¹¹B needs to be produced by SN (Austin et al. (2011))

O/Ne shell

C/O shell

4 He shell

NAVI Physics Days 2016

Si shell

- α -rich freeze-out
- after the SN shock

O/Ne shell

C/O shell

4 He shell

Si shell

- α-rich freeze-out
- after the SN shock
- O/Ne shell
 - ▶ Production from ¹²C and ¹⁶O

C/O shell

4 He shell

Si shell

- α -rich freeze-out
- after the SN shock
- O/Ne shell
 - Production from ¹²C and ¹⁶O

C/O shell

► Production from ¹²C

4 He shell

Si shell

- α -rich freeze-out
- after the SN shock
- O/Ne shell
 - Production from ¹²C and ¹⁶O

O shell

► Production from ¹²C

4 He shell

before the SN shock

 $\bullet~15~M_{\odot}$ progenitor with solar metallicity

Nucleus	no $ u$	low energies ^a	high energies ^b
⁷ Li	0.002	0.12	1.414
¹¹ B	0.01	0.30	2.07
¹⁹ F	1.30	1.38	1.59
¹³⁸ La	0.10	0.68	1.33
¹⁸⁰ Ta*	0.47	1.26	2.27

• a)
$$\langle E_{
u_e}
angle = 8.8$$
 MeV, $\langle E_{ar{
u}_e,
u_x}
angle = 12.6$ MeV

- b) $\langle E_{
 u_e, ar{
 u}_e}
 angle = 12.6$ MeV, $\langle E_{
 u_x}
 angle = 18.9$ MeV
- *) Only about 40% of 180 Ta survive in the long-lived isomeric state

Importance of neutrinos for the production of ¹⁹F

NAVI Physics Days 2016

Production of ¹⁹F

- Without neutrinos:
 - H- and He-shell burning create regions enriched in ¹⁸O and ¹⁵N
 - ► High shock temperatures allow¹⁵N(α , γ) and ¹⁸O(p, γ)

Production of ¹⁹F

- Without neutrinos:
 - H- and He-shell burning create regions enriched in ¹⁸O and ¹⁵N
 - High shock temperatures allow¹⁵N(α,γ) and ¹⁸O(p, γ)
- Neutral-current and charged-current neutrino reactions on ²⁰Ne

Production of ^{19}F for a 15 M_{\odot} progenitor

• Explosive nucleosynthesis without neutrinos

Production of ^{19}F for a 15 M_{\odot} progenitor

• Including neutrino interactions

Production of ^{19}F for a 25 M_{\odot} progenitor

 \bullet With the 25 M_{\odot} progenitor the neutrino-induced production dominates

- Without neutrinos
 - ▶ Yield: 7.3 × 10⁻⁵ M_☉
- High energy spectrum
 Yield: 9.2 × 10⁻⁵M_☉
- High energy spectrum, ${}^{15}N(\alpha,\gamma)$ from Caughlan&Fowler

▶ Yield: $4.8 \times 10^{-5} M_{\odot}$

Outline

Introduction

- Neutrino nucleosynthesis
- Input physics and cross-sections
- Supernova model

Results

- Production of ⁷Li, ¹¹B, ¹⁹F, ¹³⁸La, ¹⁸⁰Ta
- Radioactive nuclei

3 Conclusions and Outlook

Isotope	Decaytime	Decay Chain	γ-Ray Energy (keV)
⁷ Be	77 d	$^{7}\text{Be} \rightarrow ^{7}\text{Li}^{*}$	478
⁵⁶ Ni	111 d	${}^{56}\text{Ni} \rightarrow {}^{56}\text{Co}^* \rightarrow {}^{56}\text{Fe}^{*+}e^+$	847, 1238
⁵⁷ Ni	390 d	$^{57}Co \rightarrow ^{57}Fe^*$	122
²² Na	3.8 y	$^{22}Na \rightarrow ^{22}Ne^{*}+e^{+}$	1275
⁴⁴ Ti	89 y	$^{44}\text{Ti}\rightarrow^{44}\text{Sc}*\rightarrow^{44}\text{Ca}*+e^+$	1157, 78, 68
26 Al	1.04 10 ⁶ y	$^{26}\text{Al} \rightarrow ^{26}\text{Mg}^* + e^+$	1809
⁶⁰ Fe	2.0 10 ⁶ y	$^{60}\text{Fe} \rightarrow ^{60}\text{Co}^*$	1173, 1332

Isotope	Decaytime	Decay Chain	γ-Ray Energy (keV)
⁷ Be	77 d	$^{7}\text{Be} \rightarrow ^{7}\text{Li}^{*}$	478
⁵⁶ Ni	111 d	${}^{56}\text{Ni} \rightarrow {}^{56}\text{Co}^* \rightarrow {}^{56}\text{Fe}^{*+}e^+$	847, 1238
⁵⁷ Ni	390 d	$^{57}Co \rightarrow ^{57}Fe^*$	122
²² Na	3.8 y	$^{22}Na \rightarrow ^{22}Ne^{*}+e^{+}$	1275
⁴⁴ Ti	89 y	$^{44}\text{Ti}\rightarrow^{44}\text{Sc}*\rightarrow^{44}\text{Ca}*+e^+$	1157, 78, 68
26 Al	1.04 10 ⁶ y	$^{26}\text{Al} \rightarrow ^{26}\text{Mg}^* + e^+$	1809
⁶⁰ Fe	2.0 10 ⁶ y	$^{60}\text{Fe} \rightarrow ^{60}\text{Co}^*$	1173, 1332

Sensitivity to the progenitor mass

NAVI Physics Days 2016

Production channels for ²⁶ AI

Galactic $^{26}\mathrm{Al}$ emission with INTEGRAL SPI

Bouchet et al. (2015)

- Different mechanisms:
 - enhancement of

p-captures

- charged-current channel
- neutral-current channels

Production of ^{26}Al for a 15 M_{\odot} progenitor

low energy spectra: $\langle E_{\nu_X,\bar{\nu}_e}\rangle=13 {\rm MeV}$, $\langle E_{\nu_e}\rangle=9 {\rm MeV}$ high energy spectra: $\langle E_{\nu_X}\rangle=19 {\rm MeV}$, $\langle E_{\nu_e,\bar{\nu}e}=13 {\rm MeV}$

- Without neutrinos
 - \blacktriangleright Yield: $3.1\times10^{-5}M_{\odot}$
- Low energy spectrum
 - Yield: $3.8 \times 10^{-5} M_{\odot}$

Production of ^{26}Al for a 15 M_{\odot} progenitor

low energy spectra: $\langle E_{\nu_X,\bar{\nu}_e}\rangle=13 {\rm MeV}$, $\langle E_{\nu_e}\rangle=9 {\rm MeV}$ high energy spectra: $\langle E_{\nu_X}\rangle=19 {\rm MeV}$, $\langle E_{\nu_e,\bar{\nu}_e}=13 {\rm MeV}$

- Without neutrinos
 - \blacktriangleright Yield: $3.1\times10^{-5}M_{\odot}$
- Low energy spectrum
 - \blacktriangleright Yield: $3.8\times 10^{-5} M_{\odot}$
- High energy spectrum
 Yield: 5.3 × 10⁻⁵M_☉

Production of ^{26}Al for a 15 M_{\odot} progenitor

low energy spectra: $\langle E_{\nu_X,\bar{\nu}_e}\rangle=13 {\rm MeV}$, $\langle E_{\nu_e}\rangle=9 {\rm MeV}$ high energy spectra: $\langle E_{\nu_X}\rangle=19 {\rm MeV}$, $\langle E_{\nu_e,\bar{\nu}_e}=13 {\rm MeV}$

- Without neutrinos
 - \blacktriangleright Yield: $3.1\times10^{-5}M_{\odot}$
- Low energy spectrum
 - \blacktriangleright Yield: $3.8\times10^{-5}M_{\odot}$
- High energy spectrum
 Yield: 5.3 × 10⁻⁵M_☉
- Reaclib V1.1, High energy spectrum

▶ Yield: $3.6 \times 10^{-5} M_{\odot}$

Sensitivity to reaction rates studied in Iliadis et al.

(2011)

- Conclusions
 - Study of neutrino induced nucleosynthesis
 - Calculations with updated neutrino spectra
 - Important neutrino-nucleus cross-sections constrained by data
 - Study the effect on radioactive nuclei like ²²Na and ²⁶Al, including the sensitivity to nuclear reactions rates

- Conclusions
 - Study of neutrino induced nucleosynthesis
 - Calculations with updated neutrino spectra
 - Important neutrino-nucleus cross-sections constrained by data
 - Study the effect on radioactive nuclei like ²²Na and ²⁶Al, including the sensitivity to nuclear reactions rates
- Outlook
 - Study a larger range of progenitor models
 - ► Use trajectories from (Multi-D) SN simulations
 - Take into account time-dependent neutrino spectra

Thank you, for your attention

- Different mechanisms:
 - indirect enhancement of p-captures
 - direct charged-current channel

- Different mechanisms:
 - indirect enhancement of p-captures
 - direct charged-current channel
 - direct neutral-current channels

- Different mechanisms:
 - indirect enhancement of p-captures
 - direct charged-current channel
 - direct neutral-current channels
- Balance of the different channels is sensitive to stellar structure and neutrino spectra

Neutrino cross sections

• Two step process: Excitation and decay

•
$$\sigma_{X \to Y}^{k}(E_{\nu}) = \sum_{i} \sigma_{i}^{RPA}(X) \times P_{k}(Y)$$

- Excitation spectra from RPA
- Decay rates from Hauser-Feshbach statistical models
- Including evaporation of up to 4 particles

Stellar composition

Andre Sieverding

- Thermodynamic parametrization
- Temperature and density constant until the passage of the shock at t_0
- Peak temperature in the shock: $T_P = E_{expl}^{1/4} \times R^{-3/4}$
- Exponential decrease of temperature with time scale $\tau_{dyn} \propto \frac{1}{\sqrt{\rho_{initial}}}$
- Expansion with constant velocity of 5000 km/s
- Explosion energy of 10⁵¹ ergs

Parametrization of the supernova event

• Example for thermodynamic trajectory

NAVI Physics Days 2016

Neutrino Nucleosynthesis

Andre Sieverding

Description of ν emission

- Decreasing Luminosity $L_{
 u} \propto \exp\left(-\frac{t}{\tau_{
 u}}\right)$
- Isotropic emission
- Emission of 10⁵³ ergs for each flavour
- Fermi-Dirac distributed energies, $\langle E_{\mu} \rangle = 3.15 \times T_{\mu}$

•
$$T_{\nu_e} = 4 \text{ MeV}$$

•
$$T_{\bar{\nu}_e} = 4 \text{ MeV}$$

• $T_{\nu_{\mu,\tau}} = 8 \text{ MeV}$

Description taken from Woosley and Weaver 1990 (*The ν-process*, ApJ:356,272)

