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Motivation: core-collapse supernovae
• how do massive stars explode? 
• which progenitors end as black holes, which as neutron stars? 
• what is their nucleosynthesis contribution, galactical chemical evolution? 
• still many open questions in core-collapse supernova theory
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→ what is/could be the role of quark matter?



Core-collapse supernova explosions triggered by the QCD 
phase transition
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Basel-Frankfurt collaboration in 2009-2011:  
I. Sagert, G. Pagliara, J. Schaffner-Bielich, MH,  
T. Fischer, M. Liebendörfer, F.-K. Thielemann
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Quark-hadron hybrid EOS for supernovae

• hybrid EOSs available as tables for various temperatures and asymmetries, 
suitable for core-collapse supernova simulations 

• hadronic phase: „STOS“, Shen, Toki, Oyamatsu and Sumiyoshi 1998, 2011
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• quark phase: bag model 
– u,d,s (ms=100 MeV) 
– first-order corrections for strong 

interactions, αS (Farhi and Jaffe 
1984)

• first order phase transition in between

The Astrophysical Journal Supplement Series, 194:39 (28pp), 2011 June Fischer et al.

On top of the baryons, contributions from electrons and
positrons as well as photons and coulomb corrections (only
for non-NSE) are added, based on Timmes & Arnett (1999).

2.1.2. Quark Matter in the Bag Model

Bag models are phenomenological models which were orig-
inally introduced to describe quark confinement. Due to their
simple handling and ability to reproduce hadron properties (see,
e.g., Chodos et al. 1974; Degrand et al. 1975; Detar & Donoghue
1983), they are also often applied for bulk quark matter and
phase transitions in compact star interiors. The first description
of a bag model goes back to Bogolyubov (1968) and was im-
proved a few years later by Chodos et al. (1974), known today
as the MIT bag model. The main idea of quark bag models is
that the true vacuum of QCD is a medium which refuses the
penetration of quarks and confines them within a sphere (or
a bag) to form a color neutral hadron. The QCD vacuum ex-
erts a pressure on the hadron, represented phenomenologically
by the bag constant B, which is opposed by the motion of the
interior quarks. Within the bag, quarks are assumed to move
in asymptotic freedom with vanishing or current masses. Their
total pressure pQ, energy density ϵQ, entropy density sQ, and
baryon number density n

Q
B can be written as follows:

pQ =
∑

i

pi − B, ϵQ =
∑

i

ϵi + B, (2)

sQ =
∑

i

si , n
Q
B = 1

3

∑

i

ni, (3)

where the sums run over all present quark flavors i. In the
simple bag model quarks are treated as non-interacting fermions
and their contributions in the above sums can be calculated by
solving the corresponding Fermi integrals for given temperature
T, quark chemical potential µi , and mass mi as follows:

pi(mi, T , µi) = 1
3

gi

2π2

∫ ∞

0
k2dk k

∂Ei(k)
∂k

× [f (k, µi) + f (k,−µi)] (4)

ϵi(mi, T , µi) = gi

2π2

∫ ∞

0
Ei(k)k2dk

× [f (k, µi) + f (k,−µi)] (5)

si(mi, T , µi) = gi

2π2

∫ ∞

0
k2dk [−f (k, µi)lnf (k, µi)

− (1 − f (k, µi))ln(1 − f (k, µi))
− f (k,−µi)lnf (k,−µi)
− (1 − f (k,−µi))ln(1 − f (k,−µi))] (6)

ni(mi, T , µi) = gi

2π2

∫ ∞

0
k2dk

× [f (k, µi) − f (k,−µi)] . (7)

f (k,±µi) are the Fermi distribution functions with chemical
potentials for particles (+µi) and antiparticles (−µi),

f (k,±µi) = 1
e(Ei (k)∓µi )/T + 1

, (8)

where k is the momentum and Ei(k) =
√

m2
i + k2 is the quark

Fermi energy. The number of degrees of freedom for each flavor
gi consists of two spin states and three colors.

Various approaches have been introduced to extend and im-
prove the simple bag model (see, e.g., Detar & Donoghue 1983),
including first-order corrections for the strong coupling constant
αs (see, e.g., Farhi & Jaffe 1984). Since analytical expressions
for the thermodynamic potentials at finite temperature and in-
cluding αs corrections can only be obtained for massless quarks,
we calculate the pressure of massive quarks for the flavor i as
follows:

pi(mi, T , µi,αs) = pi(mi, T , µi, 0)

+ [pi(0, T , µi,αs) − pi(0, T , µi, 0)]

= pi(mi, T , µi, 0)

−
[

7
60

T 4π2 50αs

21π
+

2αs

π

(
1
2
T 2µ2

i +
µ4

i

4π2

)]
. (9)

The last two terms in Equation (9) are taken from analytical
expressions in Farhi & Jaffe (1984), where pi(mi, T , µi, 0) can
be calculated by numerically solving the Fermi integrals. The
energy density ϵi , number density ni, and entropy density si can
be calculated in a similar way. We will apply this procedure only
for the strange quarks, for which we choose a mass of ms =
100 MeV in accordance with the range of ms ∼ 70–130 MeV
and the weighted average of 105+1.5

−1.3 MeV from Amsler (2008).
The up and down quarks have masses of several MeV and can
be treated as massless, that is mu = md = 0. The remaining
quark flavors are too heavy to appear in supernova and neutron
star environments.

The value of the bag constant is an active subject of research
and expected to be in the range of B1/4 ∼ 145–235 MeV, from
hadron fitting (Detar & Donoghue 1983). An upper limit is
difficult to define. However, concerning compact stars a value
of B1/4 ! 200 MeV allows the presence of a small pure quark
matter core in the star interior (see, e.g., Schertler et al. 2000).
The lower limit for the bag constant depends on whether strange
quark matter is considered as the ground state of nuclear matter
or not. This absolute stability was introduced by Witten (1984)
and is based on the idea that hadronic matter is a metastable
state while strange quark matter has a lower energy per baryon
than 56Fe and is therefore the true ground state of nuclear matter.
This so-called Witten hypothesis leads to the existence of strange
stars, which are composed of absolutely stable strange quark
matter. These can either represent all compact stars or be in
coexistence with hadronic stars, as was recently discussed by
Bauswein et al. (2009).

In the simple bag model with mu = md = 0 and ms =
100 MeV, the absolute stability of strange quark matter sets in
for B1/4 ! 161 MeV. For finite αs and different quark masses,
Farhi & Jaffe (1984) have mapped out the limiting values of
B (see also Weissenborn et al. 2011, for different αS). In the
present article, we will not assume that strange quark matter
is absolutely stable. However, since our aim is to probe low
critical densities for the quark matter phase transition in the
early post-bounce phase of supernovae, we chose the parameter
sets of B1/4 = 162 MeV (EOS1) and B1/4 = 165 MeV (EOS2)
both with αs = 0 and B1/4 = 155 MeV with αs = 0.3
(EOS3).
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CCSN explosions by the QCD phase transition
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tpb= 240.5 ms 
tpb= 255.2 ms 
tpb= 255.4 ms 

tpb= 255.5 ms 
tpb= 256.3 ms 
tpb= 261.2 ms 

• phase transition induces collapse of the proto-neutron star 
• collapse halts when pure quark matter is reached 
• formation of a second shock 
• shock merges with standing accretion shock, explosion

[Sagert, et al. PRL 2009]

•observable signal: second neutrino burst (DasGupta et al. 2009) 
•weak r-process (Nishimura et al. 2012)
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Mass-radius relation of hybrid EOS and SN explosions
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Check: Mass-Radius Diagram of Cold Neutron Stars
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(Sagert, Fischer, Hempel, Pagliara, JSB, Thielemann, Liebendörfer 2011)

presence of quark matter can change drastically the mass-radius diagram

maximum mass: 1.56M⊙ (B1/4 = 162 MeV), 1.5M⊙ (B1/4 = 165 MeV)
→ too low! need αs corrections!

– p.34

explosions in spherical symmetry 
(T. Fischer et al. ApJS 2011)

• no explosions for 
sufficiently high 
maximum mass 

• weak phase 
transition 

• quark matter 
behaves similarly as 
hadronic matter 
„masquerade“ 

• cf.: Fischer, 
Blaschke, et al. 
2012: PNJL hybrid 
EOS

[figure adapted from I. Sagert]
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Densities reached in the supernova
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• B145 does not explode 
because there is no 
quark matter 

• B139 does not explode 
either 

• no second collapse, no 
explosion, no second 
neutrino burst 

• only weak effect of 
quark matter on the 
neutrino signal 

[figure from T. Fischer]

only few models tested, explosion mechanism still possible for others?

[Fischer, et al. Acta Phys. 
Polon. Suppl. 7 (2014)]



Thermal properties of the hybrid EOS

8



Matthias Hempel 
Darmstadt, 18.1.2016

2 A. Ohnishi
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Fig. 1. QCD phase diagram (schematic) in T − µB plane (left) and in mud −ms plane (right).

and gluons) at T = Tc = (45B/17π2)1/4 ≃ 0.72B1/4, which gives Tc ≃ 170 MeV
for B1/4 = 240 MeV. The spontaneous breaking of the chiral symmetry and its
restoration are understood as a consequence of the zero point energy and thermal
contribution of quarks. We consider here a simple model for Nf = 2. The fermion
contribution to the free energy density is given as,

ΩF

dfV
= −

∫ Λ d3k

(2π)3
Ek

2
−

1

2

∫
d3k

(2π)3
log(1 + e−(Ek−µ)/T )(1 + e−(Ek+µ)/T ) (1.1)

= −PF
SB −

M2Λ2

16π2
+

M2µ2

16π2
+

M2T 2

48
+ const.+O(M4) , (1.2)

where M is the fermion mass, Λ is the cut-off, df = 4NcNf , and PF
SB = 7/8 ×

π2T 4/90 + µ2T 2/24 + µ4/48π2. The first term in Eq. (1.1) represents the zero point
energy, (Ek/2 for each momentum k), and the second integral shows thermal con-
tributions. Provided that the constituent quark mass is proportional to the chiral
condensate σ and the free energy density is given as Ω/V = ΩF /V + bσσ2/2 with a
constant coefficient bσ, we find that the second order chiral transition can take place
at T 2 + µ2

B
/3π2 = T 2

c (µB = 3µ), which is shown by the dotted line in Fig. 2. These
simple estimates roughly coincide with the critical temperature Tc obtained in the
lattice QCD Monte-Carlo (MC) simulations and the chemical freeze-out boundary,
as discussed later. The actual QCD phase transition has both of these natures and
is known to be cross over for physical masses of two light (u, d) and one strange (s)
quarks (Nf = 2 + 1)5) as shown in Fig. 1.

In this proceedings, we discuss the QCD phase transition at high T and small
baryon densities in Sec. 2, the critical point in Sec. 3, and the phase diagram structure
of dense matter in Sec. 4. We give a short summary in Sec. 5.

K. Fukushima

QCD phase diagrams
• fundamental question: phase diagram of strongly interacting matter 
• typically shown in T-µ, sometime also in T-ρ

TU Wien
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Wikipedia

BNL

B. J. Schaefer

A. Ohnishi

S. Rüster



Is the QCD PT of liquid-gas type?
[MH, V. Dexheimer, S. Schramm, I. Iosilevskiy, PRC 88 (2013)]
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liquid-gas phase transition chiral/deconfinement phase transition

•opposite slope in P-T as fundamental 
difference  

entropicenthalpic

[Iosilevskiy, arXiv:1403.8053]

Phase diagrams of symmetric nuclear matter in P-T

[Steinheimer, Randrup, Koch, PRC89 (2014)]

[Satarov, Dmitriev, Mishustin, PAN72 (2009)]
[Bombaci et al., PLB680 (2009)]

see also:

[MH, V. Dexheimer, S. Schramm, I. Iosilevskiy, PRC 88 (2013)]



• Clausius-Clapeyron equation 

• Steiner, Lattimer and Prakash PLB 468 (2000): 

• more degrees of freedom (color, strangeness) in the quark phase, and more 
relativistic 

• leads to high specific heat capacity and low temperatures 
•→ QCD PT always entropic? 
• what about color-superconducting phases? (cf. Rüster et al. PRD73 (2006))
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The entropic QCD PT (dP/dT|PT<0)

12

4

ond and, if present, also of the third family, are increas-
ing with entropy. On the other hand, stars whose central
part has just entered the PT get unstable if entropies
are sufficiently high. One can conclude that the un-
usual thermal properties of the PT, characterized, e.g.,
by ∂T/∂nB|S < 0, are responsible for the observed TF
features.

Relation to the QCD phase diagram

Let us consider symmetric nuclear matter without
strangeness. In this case, the pressure in the coexistence
region of the PT is solely a function of temperature4 and
thus we can identify ∂P/∂T |nB

= dP/dT |PT, where the
latter quantity denotes the slope of the PT line in the
temperature-pressure phase diagram. By using Eq. (2)
one can thus relate the QCD phase diagram with a pos-
sible softening or stiffening of the EOS with increasing
entropy.
In Refs. [23, 24, 29, 31] it was shown that the slope

dP/dT |PT is negative for the QCD PT, and positive for
the liquid-gas phase transition (LGPT) of nuclear matter
(see also [26, 27, 32]). This qualitative difference can be
used to introduce a subclassification of first-order PTs:
in [23, 24] they were called entropic and enthalpic, re-
spectively. For possible experimental signatures of this
property in heavy-ion collisions see [31]. Also for the hy-
brid EOSs employed in the present study, we have found
a negative slope, i.e., that the QCD PT is entropic. For
such a PT we always expect the unusual thermal proper-
ties outlined above (e.g., ∂T/∂nB|S < 0) and thus a soft-
ening of the EOS with increasing entropy ∂P/∂S|ϵ < 0.
We remark that the general relation between the slope of
the PT line and the unusual behavior of the second cross
derivatives was first noted in [24].
The reason for this special property of the QCD PT can

be identified by using the Clausius-Clapeyron equation
[19, 23, 24, 29, 32]:

dP

dT

∣

∣

∣

∣

PT

=
SI − SII

1/nI
B − 1/nII

B

, (3)

where I and II denote the two phases in coexistence,
whereas nI

B < nII
B . One has SI < SII ↔ dP/dT |PT < 0.

The QCD PT has a negative slope (i.e., dP/dT |PT < 0)
because the quark phase has a higher entropy per baryon
than the hadronic phase, which can also be inferred
from Fig. 3. The basic degrees of freedom in the quark
phase (i.e., the chirally restored quarks) have much lower
masses than the hadrons, and thus are more relativis-
tic. This increases the specific heat and the entropy per

4 In [29], this was denoted as a “congruent PT”, using the termi-
nology of [30].

baryon; cf. [25]. In the LGPT the opposite is the case:
the denser phase (the liquid) has the lower entropy per
baryon, SII < SI . This PT does not change the structure
of the constituent particles; only the density, entropy, en-
ergy, and possibly the asymmetry of the two phases in
coexistence are different.
We remark that the hybrid EOSs considered in the

present study contain strange quarks in weak equilib-
rium, a leptonic component to maintain charge neutral-
ity, and generally we consider asymmetric systems. As a
consequence, it is not possible to relate ∂P/∂S|ϵ directly
with the slope of a PT line and only parts of the coexis-
tence region of the B165 and B139 EOSs show anomalous
thermodynamics.

Summary and conclusions

In the present study, we have investigated effects of
the QCD PT in CCSNe. We found that the explosions
reported in [1, 7] can be explained as a transition from a
second to a third family of PCS. If we interpret the first
collapse of the iron core of the progenitor star as a tran-
sition from the first to the second family of CSs, massive
progenitor stars undergo at least one transition between
different families of CSs. If also the second transition
from the second to the third family takes place this can
lead to a CCSN explosion.
Interestingly, the TF feature was only very tiny in the

case of cold CSs, and found to be enhanced with increas-
ing entropy. This was explained as a result of unusual
thermal properties of the EOS induced by the PT. It
is characterized, e.g., by a decrease of temperature with
density along isentropes in the PT, ∂T/∂nB|S < 0, and
directly implies a softening of the EOS for increasing en-
tropy, ∂P/∂S|ϵ < 0. In this situation one can generally
expect that a pronounced TF of PCS will emerge for high
enough entropies. One could say that unusual thermal
properties of the PT also favor unusual behavior in the
M -R-relation.
We showed that the unusual thermal properties are

related to a negative slope of the PT line in the
temperature-pressure plane, which in turn can be related
to higher entropies per baryon in the quark than in the
hadronic phase. From our perspective it is quite remark-
able that the M -R-relation and CCSN explosions can
be linked with the phase diagram of QCD in this way,
whose structure is one of the key issues in the physics of
strongly interacting matter. It would be very interesting
if the slope of the PT line could be constrained by heavy-
ion collisions or lattice QCD calculations in the future,
cf. [31].
However, we remark that the special thermal proper-

ties can also be present without a first-order PT: E.g.,
in [33] a negative value of ∂T/∂nB|S was identified for a
cross-over transition from hadronic to quark matter and

S = Tπ2

∑
i pFi

√
p2Fi

+ (m∗
i )

2

∑
i pFi



• for a Maxwell phase transition one has 

• using general thermodynamic relations: unusual sign of 2nd cross 
derivatives, „abnormal thermodynamics“, e.g.: 
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General properties of entropic PTs (dP/dT|PT<0)
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FIG. 3. Temperature as a function of baryon number density
for isentropes with S = 1, 2, 3, 4, and 5, (increasing from
bottom to top) and YL = 0.4 for the B165 (black solid lines)
and STOS11 (red dotted lines) EOSs. The open (full) circles
mark the onset (end) of the PT.

It ranges from 0 to ∼ 120×1051 erg, where the values are
increasing with S and decreasing with YL. For B139 they
are generally lower than for B165, but for both EOSs they
can exceed the typical explosion energy of a CCSN by
orders of magnitude if entropies are high and the lepton
fraction is low. The finding that the TF is much less
pronounced for B139 is consistent with the result that
this EOS did not lead to explosions in spherical CCSN
simulations [11]. Only a pronounced TF of PCS seems
to be favorable for explosions.
We remark that the collapse from the second to the

third family of cold CSs has been studied already in the
literature, see, e.g., [20]. In addition to the energy re-
lease, an accompanying neutrino and/or a gamma-ray
burst is expected. Pagliara et al. [21] noted that also
deleptonization can trigger a collapse from the second to
the third family, which represents a related scenario. A
collapse in rotating stars can also lead to the emission of
gravitational waves [22].

Unusual thermal properties of the EOS induced by
the PT

For most EOS the pressure is increasing with tem-
perature, consider, e.g., an ideal Maxwell-Boltzmann or
Fermi-Dirac gas. However, it is also possible in spe-
cial situations that ∂P/∂T |nB

< 0.3 In [23] this was
called “abnormal thermodynamics” and it was pointed
out in [23, 24] that such an unusual sign of a second cross
derivative never occurs isolated, but is accompanied by a
change of the sign of many other second cross derivatives.
For example one has
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FIG. 4. (Color online) The pressure as a function of energy
density for the B165 (black lines) and STOS11 (red lines)
EOSs for YL = 0.4 and various entropies per baryon S. The
open (full) circles mark the onset (end) of the PT.

In Fig. 3 we show the temperature as a function
of baryon number density for several isentropes of the
STOS11 and B165 EOSs. A region with negative slope
∂T/∂nB|S is present for all entropies. It shifts to lower
densities and becomes more pronounced by increasing S.
For the B139 EOS such a negative slope is only found for
high values of S above 4. Generally, it occurs only inside
the two-phase coexistence region of the PT, see Fig. 3.
This unusual decrease of temperature due to the PT has
also been found for various other hybrid EOSs, see, e.g.,
[7, 19, 25–27].
This behavior has direct consequences on the stability

of CSs. Let us consider the derivative
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where ϵ is the energy density, cs the speed of sound, c
the speed of light, and CV the heat capacity per baryon
(see also [28]). If ∂P/∂S|ϵ is positive (negative), it corre-
sponds to a stiffening (softening) of the EOS with increas-
ing S. The first term, that is a relativistic correction, is
always negative. Usually the second term is positive (as
outlined above) and larger than the first one, and thus
one has stiffening. However, whenever ∂T/∂nB|S < 0
or equivalently ∂P/∂T |nB

< 0 and because CV > 0,
∂P/∂S|ϵ will be negative and one has softening.
To illustrate this, In Fig. 4 we show the STOS (red

curves) and B165 (black curves) EOSs for YL = 0.4 and
entropies per baryon of S = 0, 2, and 4. In the hadronic
phase the pressure is always increasing with entropy. In
the pure quark phase the pressure is only slightly in-
creased by entropy. Outside the PT one thus has the nor-
mal behavior that the EOS is stiffened when it is heated.
However, in a part of the PT around ϵ = 400 MeV/fm−3

one has softening, i.e., the pressure is decreasing with
entropy. The same effect was noted in [26] before.
The stiffening in the single phases and softening in

the PT fits the behavior of the M -R relations discussed
above: On the one hand, overall the maxima of the sec-

[Iosilevskiy, arXiv:1403.8053]
[Iosilevskiy, arXiv:1504.05850]
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Therefore, these trajectories contain an important in-
formation about the conditions which can be realized
in heavy-ion collisions. Figure 18 shows the phase
diagram and corresponding adiabates in the µ−T
plane. In such a representation the adiabates with
S/B = 0 and S/B = ∞ are given, respectively, by
the horizontal (T = 0) and vertical (µ = 0) axes. Note
that at T → 0 all adiabates with finite µ end in the
point µ ≃ mN , where mN = 939 MeV is the nucleon
mass. Moreover, these adiabates have a zigzag-type

behavior [22, 25] characteristic for a first-order phase
transition. This means that along the adiabatic trajec-
tory the temperature grows when the system enters
the coexistence region. In other words, the tempera-
ture of the HP at λ = 1 is higher than the temperature
of the QP at λ = 0. Such a picture differs from the
predictions of the linear σ model and the Nambu–
Jona-Lasinio model [5, 45] for the chiral first-order
phase transition. There temperature drops in the MP.
This difference may be related to the fact that the
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[Satarov et al. 2009]

entropic

• dT/dnB|S<0 observed by many 
authors, also well-known in 
heavy-ion collisions 

• Steiner et al. PLB 2000 
• Nakazato et al. APJ 2010 
• Fischer et al. APJS 2011 
• Yudin et al. Astron. L 2013 
• … 
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CCSN explosions and the QCD PT
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[MH, O. Heinimann A. Yudin, I. Iosilevskiy, M. Liebendörfer, F.-K. Thielemann, arXiv:1511.06551]
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A third family of proto-compact stars
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• third family feature („twins“) 
arises for high entropies 

• result of the thermal 
properties of the EOS 

• transition from second to third 
family releases gravitational 
energy of 1050 to 1053 erg

• explains the supernova explosions of Sagert and Fischer et al: 
• proto-neutron star first on the second branch 
• accretion until maximum reached 
• collapse to third family, energy release, formation of 2nd shock, explosion 
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A third family of proto-compact stars — neutrino free
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• for B139: third family arises 
only for very high entropies, 
much less pronounced
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A third family of proto-compact stars — trapped neutrinos
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• neutrinos tend to suppress the 
third family feature 

• less gravitational binding 
energy release, if at all



• for stability: P(ε,S) 
• to characterize thermal effects: dP/dS|ε 
• dP/dS|ε>0: stiffening, dP/dS|ε<0: softening for increasing entropy 

• using general thermodynamic relationships: 

• first term small, relativistic correction 
•→ abnormal thermodynamics/entropic PT induces a softening of the 
EOS with increasing temperature/entropy (!) 

• „inverted convection“ possible, where positive entropy gradients are 
convectively unstable [A.V. Yudin, MH, D.K. Nadyozhiny, T.L. Razinkova, 
MNRAS 45, 4325 (2015)]
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Unusual thermal properties and stability of compact stars
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It ranges from 0 to ∼ 120×1051 erg, where the values are
increasing with S and decreasing with YL. For B139 they
are generally lower than for B165, but for both EOSs they
can exceed the typical explosion energy of a CCSN by
orders of magnitude if entropies are high and the lepton
fraction is low. The finding that the TF is much less
pronounced for B139 is consistent with the result that
this EOS did not lead to explosions in spherical CCSN
simulations [11]. Only a pronounced TF of PCS seems
to be favorable for explosions.
We remark that the collapse from the second to the

third family of cold CSs has been studied already in the
literature, see, e.g., [20]. In addition to the energy re-
lease, an accompanying neutrino and/or a gamma-ray
burst is expected. Pagliara et al. [21] noted that also
deleptonization can trigger a collapse from the second to
the third family, which represents a related scenario. A
collapse in rotating stars can also lead to the emission of
gravitational waves [22].

Unusual thermal properties of the EOS induced by
the PT

For most EOS the pressure is increasing with tem-
perature, consider, e.g., an ideal Maxwell-Boltzmann or
Fermi-Dirac gas. However, it is also possible in spe-
cial situations that ∂P/∂T |nB

< 0.3 In [23] this was
called “abnormal thermodynamics” and it was pointed
out in [23, 24] that such an unusual sign of a second cross
derivative never occurs isolated, but is accompanied by a
change of the sign of many other second cross derivatives.
For example one has
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FIG. 4. (Color online) The pressure as a function of energy
density for the B165 (black lines) and STOS11 (red lines)
EOSs for YL = 0.4 and various entropies per baryon S. The
open (full) circles mark the onset (end) of the PT.

In Fig. 3 we show the temperature as a function
of baryon number density for several isentropes of the
STOS11 and B165 EOSs. A region with negative slope
∂T/∂nB|S is present for all entropies. It shifts to lower
densities and becomes more pronounced by increasing S.
For the B139 EOS such a negative slope is only found for
high values of S above 4. Generally, it occurs only inside
the two-phase coexistence region of the PT, see Fig. 3.
This unusual decrease of temperature due to the PT has
also been found for various other hybrid EOSs, see, e.g.,
[7, 19, 25–27].
This behavior has direct consequences on the stability

of CSs. Let us consider the derivative
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where ϵ is the energy density, cs the speed of sound, c
the speed of light, and CV the heat capacity per baryon
(see also [28]). If ∂P/∂S|ϵ is positive (negative), it corre-
sponds to a stiffening (softening) of the EOS with increas-
ing S. The first term, that is a relativistic correction, is
always negative. Usually the second term is positive (as
outlined above) and larger than the first one, and thus
one has stiffening. However, whenever ∂T/∂nB|S < 0
or equivalently ∂P/∂T |nB

< 0 and because CV > 0,
∂P/∂S|ϵ will be negative and one has softening.
To illustrate this, In Fig. 4 we show the STOS (red

curves) and B165 (black curves) EOSs for YL = 0.4 and
entropies per baryon of S = 0, 2, and 4. In the hadronic
phase the pressure is always increasing with entropy. In
the pure quark phase the pressure is only slightly in-
creased by entropy. Outside the PT one thus has the nor-
mal behavior that the EOS is stiffened when it is heated.
However, in a part of the PT around ϵ = 400 MeV/fm−3

one has softening, i.e., the pressure is decreasing with
entropy. The same effect was noted in [26] before.
The stiffening in the single phases and softening in

the PT fits the behavior of the M -R relations discussed
above: On the one hand, overall the maxima of the sec-
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Temperature for isentropes of proto-neutron star matter

19

• dT/dnB<0 in parts of the phase 
coexistence region, >0 elsewhere 

• phase transition leads to 
abnormal thermodynamics 

S=1
2

3
4

5

YL=0.4
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Pressure-energy density relation

20

•hadronic and quark matter 
stiffens when it is heated 

• in the phase coexistence region it 
softens (!)

YL=0.4

→ the unusual thermal properties of the entropic PT are 
responsible for the supernova explosions
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Summary and conclusions
• phase diagram in P-T can provide interesting information 
• is the QCD PT entropic (dP/dT|PT<0)? 

• entropic PTs lead to unusual thermal properties of the EOS, „abnormal 
thermodyamics“ 

• possible consequences in astrophysics: 
– inverted convection in proto-neutron stars 
– third family of proto-compact stars which exists only at finite entropy 
– core-collapse supernova explosions 

• is it possible to achieve explosions by the QCD PT and have a maximum 
mass above 2 Msun? 

– requires new EOSs and new simulations → Ph.D. project of 
O.Heinimann (Basel) 

– note: no multi-D simulations with QCD PT yet 
– the maximum mass is determined at T=0, for the supernova the 

thermal properties are crucial (!)
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