

Neutrino-matter interactions for core-collapse supernovae – Precision at subleading order

NAVI Physics Days 2016 – January 18– GSI Andreas Lohs (Univ. Basel)

TECHNISCHE UNIVERSITÄT DARMSTADT Core collapse supernovae release huge amount of energy.

Neutrino spectra and interactions with matter are maior determinants of nucleosynthesis conditions.

Neutrino-Interactions: Two Regimes

Interior of the neutron star:

Neutrino spectra formation

$$p + e^- \rightleftharpoons \nu_e + n$$

$$n + e^+ \rightleftharpoons \bar{\nu}_e + p$$

Spectrum determines composition

$$\nu_e + n \rightarrow p + e^{-}$$

$$\bar{\nu}_e + p \to n + e^+$$

Uncertainties in Neutrino Physics

What is the correct Equation of state?

Which reactions are relevant?

- Not obvious for $\overline{v_e}$ and v_x
- Answer may vary for different SNe

How to compute neutrino interactions?

-inelasticity, relativity, medium effects, weak magnetism ...

 μ_n

 μ_{p}

 μ_{ρ}

Nucleosynthesis in Neutrino Driven Wind

Long term simulations indicate proton rich late NDW
Ye≤0.5 possible during first seconds
No full r-process, but weak r-process possible?

A more detailed picture requires (among other things) inclusion of subleading order effects in neutrino rates

Mean Free Path for Neutrino Absorption

Elastic Approximation

- Lowest order expression for nonrelativistic nucleons
- Analytic formula for $\lambda(E_{
 u})$
- Can be corrected to include recoil, weak magnetism, ...

Nucleons as quasi-free fermions – Hartree response

- Relativistic kinematics, "full" matrix element, no correlations
- Mostly 2-D numerical integrals to obtain $\lambda(E_{
 u})$

Structure function from RPA / Linear response theory

- Fully consistent with RMF-EOS, correlations (can be) included
- Requires 3-D numerical integrals to obtain $\lambda(E_{
 u})$

Elastic Approximation for Neutrino Absorption

Mean-free path for (quasi-) free particles:

$$\lambda(E_{\nu})^{-1} \sim \int d^3 p_e \left[1 - f_e(E_e)\right] \int d^3 p_n \int d^3 p_p \frac{\left< |M|^2 \right>}{16E_{\nu}E_n E_e E_p} f_n(E_n) \left[1 - f_p(E_p)\right] \delta^4$$

Assume non-relativistic nucleons and elastic collision:

$$E_{n,p} \simeq m_{n,p} \Rightarrow \frac{\left\langle |M|^2 \right\rangle}{16E_{\nu}E_nE_eE_p} \simeq G_A^2 \left(3-x\right) + G_V^2 \left(1+x\right)$$
$$E_n - E_p \simeq m_n - m_p + U_n - U_p$$

Mean-free path reduces to

$$\lambda(E_{\nu})^{-1} \sim \left(3G_{A}^{2} + G_{V}^{2}\right) \left(E_{\nu} + \Delta m + \Delta U\right)^{2} \left[1 - f_{e}(E_{\nu} + \Delta m + \Delta U)\right] \frac{n_{n} - n_{p}}{1 - \exp\left[\left(\eta_{p} - \eta_{n}\right)/T\right]}$$

Recoil and Weak Magnetism Corrections

[Horowitz, PRD 65 (2002) 043001] pointed out:

- "Elastic Approximation" is more simplified than necessary
- Kinematics/Recoil can be treated relativistically

$$E_n = m_n \Rightarrow E_e = \frac{E_\nu}{1 + \frac{E_\nu}{m_n} \left(1 - x\right)}$$

- To include in phase space factor and matrix element
- Gives rise to analytic correction factor for cross-section

$$R = \left\{ G_V^2 \left(1 + 4e + \frac{16}{3}e^2 \right) + 3G_A^2 \left(1 + \frac{4}{3}e \right)^2 \pm 4G_A \left(G_V + F_2 \right) e \left(1 + \frac{4}{3}e \right) + \frac{8}{3}G_V F_2 e^2 + \frac{1}{3}F_2^2 e^2 \left(5 + 2e \right) \right\} / \left[\left(1 + 2e \right)^3 \left(G_V^2 + 3G_A^2 \right) \right]$$

Recoil and Weak Magnetism Corrections

[Horowitz, PRD 65 (2002) 043001] pointed out:

- "Elastic Approximation" is more simplified than necessary
- Kinematics/Recoil can be treated relativistically

$$E_n = m_n \Rightarrow E_e = \frac{E_\nu}{1 + \frac{E_\nu}{m_n} \left(1 - x\right)}$$

- To include in phase space factor and matrix element
- Gives rise to analytic correction factor for cross-section

Correction factors are ratios of vacuum cross sections with exact and approximated matrix element and phase space, assuming the target nucleon at rest.

Correction Factor for Cross-Section

Correction Factor for Cross-Section

- In NDW, equilibrium shifted towards neutrino absorption
- In decoupling region, neutrino sphere moves inwards for antineutrinos, resulting in higher average energy

Improvement: Consider Mass and Potential Differences

- Masses and strong interaction potentials of nucleons differ
- At large densities effective masses decrease

$$E_e = \frac{E_{\nu} + \frac{M_*^2 - m_p^{*2}}{2M_*}}{1 + \frac{E_{\nu}}{M_*} (1 - x)} \qquad M_* = m_n^* + U_n - U_p$$

- Analytic correction factor can still be derived the same way
- In the matrix element, additional terms can be included
- For neutrino scattering, only difference is exchange of rest mass with effective mass

Improved Correction Factor

$$\begin{split} R &= \left\{ G_V^2 \left[1 + 4e_* + \frac{16}{3} e_*^2 + \frac{4}{3} e_* \xi + \left(1 + \frac{2}{3} e_* \right) (\xi - q_*) \right] \right. \\ &+ G_A^2 \left[3 + 8e_* + \frac{16}{3} e_*^2 - \frac{4}{3} e_* \xi - \left(1 + \frac{2}{3} e_* \right) (\xi + q_*) \right] \\ &\pm G_A \left[G_V + F_2 \frac{M_*}{m_N} \left(1 - \frac{\xi}{2} \right) \right] \left[4e_* + \frac{16}{3} e_*^2 + q_* \left(2 + \frac{4}{3} e_* \right) \right] \\ &+ G_V F_2 \frac{M_*}{m_N} \left[\left(1 + \frac{q_*}{e_*} - \frac{\xi}{2} \right) \frac{8}{3} e_*^2 + \xi q_* \left(1 + 2e_* + \frac{4}{3} e_*^2 \right) \right] \\ &+ F_2^2 \frac{M_*^2}{m_N^2} \left[\frac{5}{3} e_*^2 + \frac{2}{3} e_*^3 + \left(\frac{1}{2} + e_* \right) \tilde{A} + \left(\frac{1}{2} + \frac{1}{3} e_* \right) \tilde{B} + \frac{2}{3} e_* \tilde{C} \right] \right\} \\ &+ \left[\left(1 + 2e \right)^3 \left(G_V^2 + 3G_A^2 \right) \right] \\ \xi &= \frac{\Delta m^* + \Delta U}{M_*}, \quad q = \frac{m_n^{*2} - m_p^{*2}}{2M_*^2}, \quad q_* = \frac{M_*^2 - m_p^{*2}}{2M_*^2} \end{split}$$

 M_*

ξ

Improved Correction Factor at Low Densities

Improved Correction Factor at High Densities

Improved Correction Factor at High Densities

Neutron decay at high density

Elastic Approximation and Corrections for Neutron Decay

Elastic approximation for neutron decay similar to absorption

$$\lambda(E_{\nu})^{-1} \sim \left(3G_{A}^{2} + G_{V}^{2}\right) \left(\Delta m + \Delta U - E_{\nu}\right)^{2} f_{e}(\Delta m + \Delta U - E_{\nu}) \frac{n_{p} - n_{n}}{1 - \exp\left[\left(\eta_{n} - \eta_{p}\right)/T\right]}$$

Kinematic relation for inverse neutron decay, assuming proton at rest

$$E_e = \frac{-E_{\bar{\nu}} + \frac{M_*^2 - M_f^2}{2M_*}}{1 + \frac{E_{\bar{\nu}}}{M_*} \left(1 - x\right)}$$

Physical meaning only for different nucleon masses and/or potentials

Elastic Approximation and Corrections for Neutron Decay

Result: Correction factor for neutron decay is EXACTLY the same as for antineutrino absorption

- Neutron decay and antineutrino absorption refer to different neutrino energies
- Absorption: $m_e + \Delta m_* + \Delta U < E_{\bar{\nu}} < \infty$
- Decay: $0 < E_{\bar{\nu}} < -m_e + \Delta m_* + \Delta U$
- For decay, corrections increase or decrease rate, depending on antineutrino energy

Improved Correction Factor at High Densities

Limit of Approximations

- Elastic opacities with weak magnetism corrections should be very good for zero temperature vacuum
- How good are the approximations for finite T and ρ ?
 - at conditions of NDW?
 - at conditions of neutrinosphere?
- Compare approximations with "exact" opacity
- How to compute "exact" opacity?

Computing "exact" neutrino opacities in CCSN

Hartree approximation for nucleon response:

- nucleon-nucleon interaction described by RMF-potentials and effective masses
- nucleons are quasi-free particles with modified energy

$$E_{n,p} = \sqrt{\mathbf{p}^2 + m_{n,p}^{*2} + U_{n,p}}$$

relativistic kinematics, "full" matrix element, weak magnetism included

$$\lambda(E_{\nu})^{-1} \sim \int d^3 p_e \left[1 - f_e(E_e)\right] \int d^3 p_n \int d^3 p_p \frac{\left< |M|^2 \right>}{16E_{\nu}E_n E_e E_p} f_n(E_n) \left[1 - f_p(E_p)\right] \delta^4$$

• No correlations, but always better than elastic approximation

Limit of Approximations

- Elastic opacities with weak magnetism corrections are indeed very good for zero temperature vacuum
- For temperatures of several MeV, approximation underestimates opacities (~10%)
- At neutrinosphere, additional significant deviations for neutrino energies of several 10 MeV
- Approximation "fails" at the level of weak magnetism corrections for higher densities/temperatures
 - What is the reason for the failure? (target at rest; inelasticity; relativity)
 - Is there a "cure"?

Alternativ Approximations and Corrections

Reminder:

Correction factors are ratios of vacuum cross sections with exact and approximated matrix element and phase space, assuming the target nucleon at rest.

Idea:

- Study correction factors isolated from elastic approximation
- Choose different/lesser approximations of matrix element

Example 1:

- Calculate "exact" opacity, but with coupling constant $F_2=0$
- Correct by corresponding ratio of vacuum cross sections

Alternativ Approximations and Corrections

Example 1:

- Calculate "exact" opacity, but with coupling constant $F_2=0$
- Correct by corresponding ratio of vacuum cross sections
- Correction factors precise also at higher densities and temperatures

Example 2:

- Inelastic, nonrelativistic opacity as base
- Most simple matrix element ~ $(G_V^2 + 3G_A^2)$
- Similar approaches currently applied in some simulations

Limit of Approximations for Neutrino Opacities

- For densities up to NDW-conditions and temperatures below several MeV, exact neutrino opacities can be reproduced by elastic approximation + correction factors.
- For higher temperatures or for neutrinosphere densities, the approximation "fails" at the level of the correction.
- For inelastic opacities, "good" corrections can be found also at higher densities and temperatures.
- Calculation of inelastic opacities equally demanding as "exact" opacities
 - For precision at 10% level, "exact" opacity generally favourable over elastic approximation
 - When interested in correlations, inelastic but approximated opacity + corrections can be suitable

Correction Factors for neutrino-nucleon interactions:

- Can be extended to include strong interaction potentials and effective masses, and to describe neutron decay
- With elastic appoximation, validity of corrections restricted to to "lower" densities and temperatures
- For inelastic opacities, precise corrections exist also at neutrinospheres (decoupling region)

 "Exact" opacity preferable when interested in precise neutrino spectra

 Outlook: Include momentum dependence of coupling constants into "exact" opacity