Linking nuclear formation processes and stellar chemical surface composition. GSI

Camilla Juul Hansen

The Dark Cosmology Centre, University of Copenhagen

January 2016

Outline

- Cool stars are the only astrophysical objects in which we can conduct a detailed and precise abundance study of up to \sim 70 elements
- Stellar parameters, abundances, and assumptions
- Tracing the astrophysical formation site using stellar abundances
- Meteorites
- CEMP stars
- Galactic chemical evolution
- Yield predictions

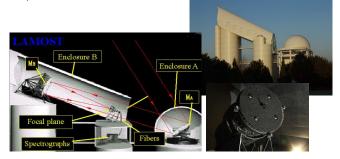
VLT/UVES and LAMOST

Telescopes

•000

Very Large Telescope (VLT) - 8-m mirror

Figure: Simple sketch of a spectrograph – Massey et al.



Telescopes

0000

Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) — 4-m mirror, 4000 fibres $\rightarrow 10000$ stars/night or $2 \cdot 10^6$ stars/year \rightarrow *Surveys*

Telescopes

0000

LAMOST vs UVES/VLT spectra

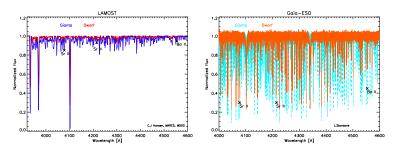
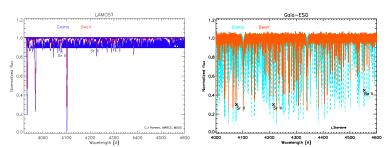
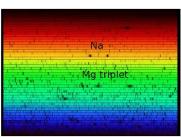


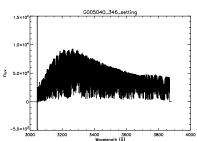
Figure: LAMOST (low resolution $R \sim 1800$) and ESO VLT (UVES - high resolution $R \sim 40000$)

Telescopes

0000

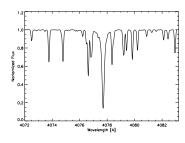
LAMOST vs UVES/VLT spectra

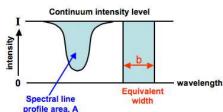




Figure: LAMOST (low resolution $R\sim1800$) with noise and ESO VLT (UVES - high resolution $R\sim40000$)

Important: Sr may be the only heavy element for which we will be able to derive abundances in low-resolution spectra.

•00000000000



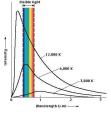


Stellar spectra and equivalent width (W)

Abundances

Abundance - W - log gf relation; the impact of stellar parameters and atomic data

$$\log W = \log(const) + \log(A) + \log(gf\lambda) - \theta\chi - \log(\kappa)$$
 (1)



Hansen et al. 2012

Since the UV-region of the spectra is crowded we have to carry out spectral synthesis on line lists with accurate atomic data.

Two ways of deriving abundances:

- Equivalent width and synthetic spectra
- We need to know the stellar parameters: Temperature, gravity, metallicity and velocity (small scale)
- Model atmosphere (e.g. MARCS) and synthetic spectrum code (e.g. MOOG)
- Assumptions: 1D, LTE –
 one local temperature, black body radiation
 (Planck), Maxwellian velocity distribution,
 Boltzmann and Saha describe excitation and ionisation
- Line lists with atomic and molecular information (excitation potential and log gf)

- The color of a star depends on two factors: Temperature and metallicity
- Color (V-K) calibration Alonso et al. 1999, Casagrande et al. 2010: $T = a + b(V - K) + c(V - K)^{2} + d(V - K)[Fe/H] + \dots$
- Excitation potential based on Fe lines (NLTE sensitive)
- Parallax/distance (π) e.g., Nissen et al. 1997: $log \frac{g}{g_{G}} = log \frac{M}{M_{G,m}} + 4 \frac{T}{T_{G,m}} + 0.4V_o + 2log(\pi) + corrections$
- Ionisation equilibrium from Fe lines (NLTE sensitive)
- Metallicity ([Fe/H]) from equivalent widths of Fe lines

Telescopes

Abundances for Astronomers (spectroscopists)

$$\log \epsilon(Element) = \log(N_{Element}/N_H) + 12 \tag{2}$$

where

Telescopes

$$\log(N_H) = 12 \tag{3}$$

Abundances for Theoreticians

X = H (mass fraction: ~ 0.75),

 $Y = He (\sim 0.25)$, and

Z = Li and heavier (< 0.01)

Stellar spectra, abundances, and [Fe/H]

$$[Fe/H] \equiv \log(N_{Fe}/N_{H})_* - \log(N_{Fe}/N_{H})_{\odot}$$
 (4)

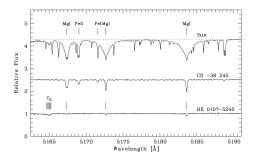


Figure: Top: Solar ([Fe/H] = 0) spectrum – Mg triplet. Bottom: Star with [Fe/H] \sim -5. Christlieb ± 2004

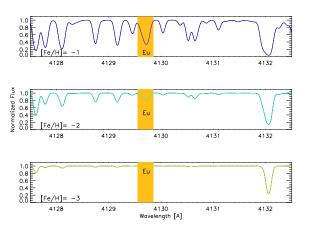


Figure: Observational abundance biases (Hansen et al, 2014b)

Observable elements - with high-resolution instruments

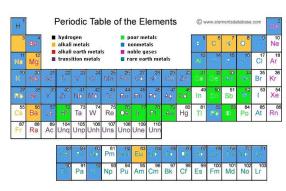
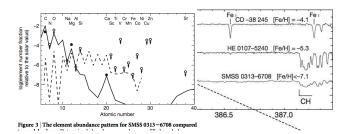


Figure: Blue: ground based observations, green: space, yellow: isotopic abundances

Record holding star - CS31082-001 **Abundances** of almost 70 elements. 37 of which are heavy elements. Sigueira Mello et al. 2013

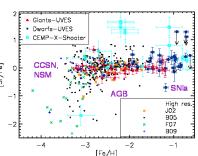
Table 1. LTE abundances in CS 31082-001 as derived from previous works, from the present paper, and our adopted final abundances.

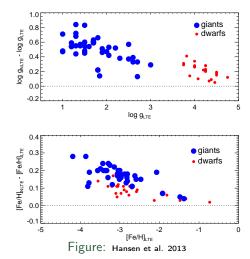
El.	Z	A(X) (1)	A(X) (2)	A(X) (3)	A(X) This Work	A(X) adopted	[X/Fe] adopted
Ge	32	72	Ē	7.50	+0.10	+0.10±0.21	-0.55
Sr	38	+0.72	-	-	_	+0.72±0.10	0.73
Y	39	-0.23	-	_	-0.15	-0.19±0.07	0.53
Zr	40	+0.43	-	-	+0.55	+0.49±0.08	0.84
Nb.	41	-0.55	-		-0.52	-0.54±0.12	0.97
Mo	42	0.000			-0.11	-0.11 ± 0.13	0.90
Ru	44	+0.36		_	+0.36	+0.36±0.12	1.45
Rh	45	-0.42	_	-	-0.42	-0.42±0.12	1.39
Pd	46	-0.05		-	-0.09	-0.09 ± 0.07	1.18
Ag	47	-0.81	-		-0.84	-0.84±0.21	1.15
Ba	56	+0.40	_	_		+0.40±0.14	1.16
La	57	-0.60	-0.62	-	-	-0.62 ± 0.05	1.17
Ce	58	-0.31	-0.29	_	-0.31	-0.29±0.05	1.03
Pr	59	-0.86	-0.79			-0.79±0.05	1.38
Nd	60	-0.13	-0.15	-	-0.21	-0.15±0.05	1.33
Sm	62	-0.51	-0.42	-	-0.42	-0.42 ± 0.05	1.51
Eu	63	-0.76	-0.72	-	-0.75	-0.72±0.05	1.69
Gd	64	-0.27	-0.21	-	-0.29	-0.21±0.05	1.61
Tb	65	-1.26	-1.01	_	-1.00	-1.01±0.05	1.64
Dy	66	-0.21	-0.07	-	-0.12	-0.07±0.05	1.73
Ho	67		-0.80	_		-0.80±0.06	1.62
Er	68	-0.27	-0.30		-0.31	-0.30±0.05	1.67
Tm	69	-1.24	-1.15		-1.18	-1.15±0.05	1.64
Yb	70	-	-0.41		-	-0.41 ± 0.11	1.66
Lu	71	100	-		-1.08	-1.08 ± 0.13	1.73
Hf	72	-0.59	-0.72	-	-0.73	-0.72±0.05	1.33
Ta	73	_	_	_	-1.60	-1.60±0.23	1.47
W	74	-		-	-0.90	-0.90±0.24	0.92
Re	75	-	-	-	-0.21	-0.21±0.21	2.45
05	76	+0.43		+0.18	_	+0.18±0.07	1.72
Ir	77	+0.20	-	+0.20	-	+0.20±0.07	1.72
Pt	78		-	+0.30		+0.30±0.23	1.46
Au	79			-1.00		-1.00±0.34	0.89
Pb	82	-	-	-0.65		-0.65±0.19	0.25
Bi	83	-	_	-0.40	_	-0.40±0.33	1.83
Th	90	-0.98		11000		-0.98±0.13	1.84
U	92	-1.92	-			-1.92±0.17	1.68


References. (1) Hill et al. (2002), (2) Sneden et al. (2009), (3) Barbuy et al. (2011).

00000000000

Keller et al. 2014: [Fe/H] < 7.1 - origin SN II of M $\sim 60 M_{\odot}$ Bessel et al. 2015 (3D, NLTE corrections) $\rightarrow 40 M_{\odot}$ SN




00000000000

- Big Bang Nucleosynthesis: H,He, and Li
- SN type II: α -elements
- SN type Ia: Fe-peak elements 🗒
- Neutron-capture processes (most heavy isotopes)
 SN, NSM, AGB,...



Assumptions: LTE vs NLTE - the impact on stellar parameters

Assumptions: LTE vs NLTE - Strontium

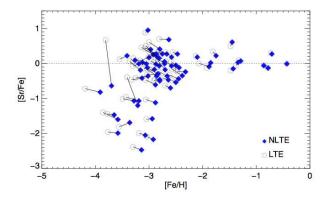
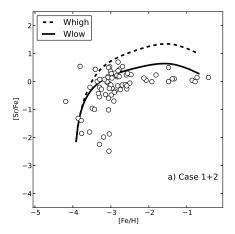
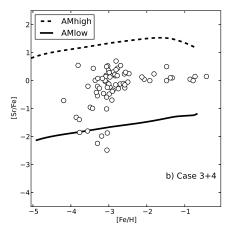
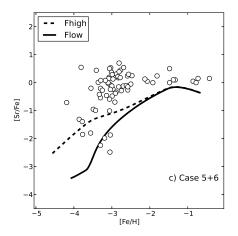
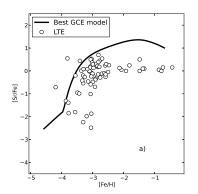



Figure: Hansen et al. 2013


Chemical evolution of Sr Yields from faint SN II (Wanajo et al.) Hansen et al. 2013


Chemical evolution of Sr Yields from $\nu\text{-driven}$ winds (Arcones & Montes) Hansen et al. 2013


Chemical evolution of Sr Yields from massive fast rotating stars (Frischknecht et al.) Hansen et al. 2013

The chemical evolution of Sr – LTE vs NLTE

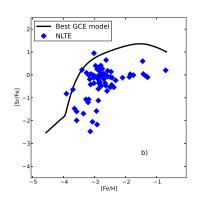
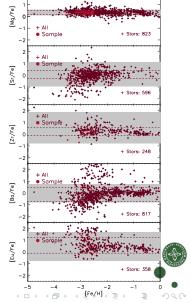


Figure: Hansen et al. 2013

The uncertain yields can cover a large range of stellar abundances. Despite uncertainties we can still make quantitative predictions such as:

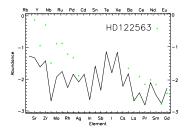
- Massive stars may facilitate an early s-process which creates small amounts of Sr.
- Faint CC SN are well constrained due to the selfconsistent 2D models and match the observations fairly well (despite slight overpredictions).
- ν -driven winds are promising but need to be better constrained.

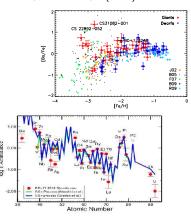


Abundances

Telescopes

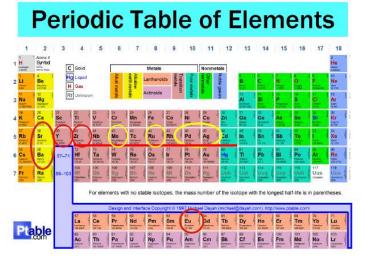
Scatter and multiple formation processes


- Weak s-process: $Z \sim < 40$ (or 42)
- Main s-process broad atomic range - typically Ba (Z=56) and heavier
- Weak r-process: 40 < Z < 50
- Main r-process possibly full range - or Z>50 (Hansen et al. 2014b)

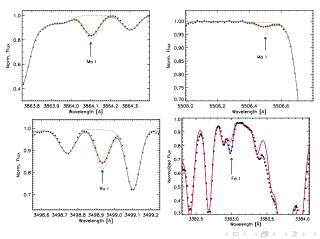

Abundances

Abundance star-to-star scatter and the 2nd/weak r-process

- HD122563 proto weak r star
- Large star-to-star scatter for n-capture elements (e.g. Sr & Ba)

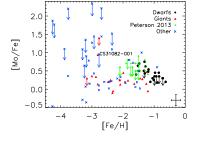


Selected elements


Abundances

Near-UV - blue spectra (Hansen et al. 2012, 2014a)

$$\log W = \log(const) + \log(A) + \log(gf\lambda) - \theta\chi - \log(\kappa)$$
 (5)



The Dark Cosmology Centre, University of Copenhagen

Galactic chemical evolution of Mo and Ru

$$[Fe/H] \equiv \log(N_{Fe}/N_{H})_* - \log(N_{Fe}/N_{H})_{\odot}$$
 (6)

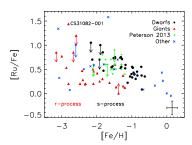
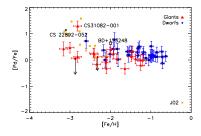
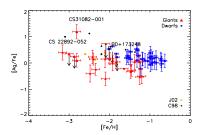
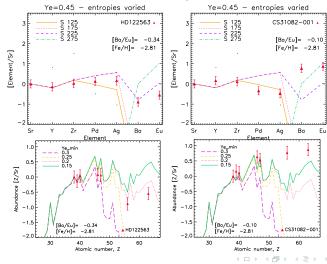



Figure: Hansen et al, 2014

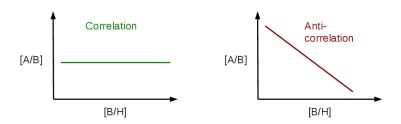
Galactic chemical evolution of Pd and Ag




Figure: Hansen et al, 2012

r-poor vs r-rich stars: HD122563 & CS31082-001

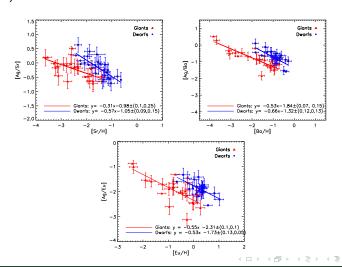
(Honda et al, 2006, Hill et al, 2002 & Hansen et al, 2012)

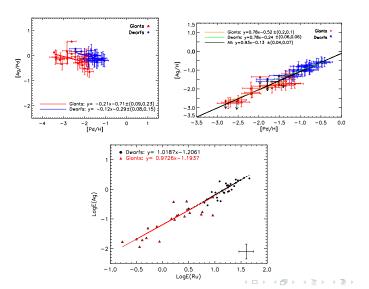


Sr - Eu Correlation - Anticorrelation

Abundances

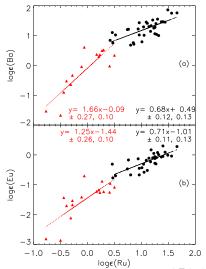
If two elements are created by the same process, they most likely grow in the same way (correlate).


Elements (38 < Z < 50) are generally found to anti-correlate with Z > 56 elements (Burris et al, 2000, Montes et al, 2007, François et al 2007)


Weak/main s/r-process elements - Sr (85% s), Ba (81% s) and Eu (94% r) Arlandini et al 1999 Hansen et al, 2012

Sr - Eu

Weak r-process elements: Ru, Pd, and Ag Hansen et al 2012, 2014a


Camilla Juul Hansen

Sr - Eu

The Dark Cosmology Centre, University of Copenhagen

Sr - Eu

Ru not main s or main r (Hansen et al. 2014a)

Camilla Juul Hansen

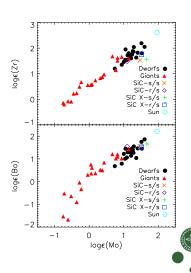
The Dark Cosmology Centre, University of Copenhagen

Two r-processes

Abundances

Ru, Pd, and Ag are formed by the weak r-process

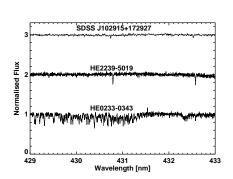
- The main r-process creates the heaviest elements ($\mathsf{Z} > 56$) in a very robust way
- The 'weak' r-process creates the intermediately heavy (37 < Z < 50) - range uncertain
- Possible formation sites are neutron star (NS) mergers (main r), and ECSN, ν -driven winds (weak r)

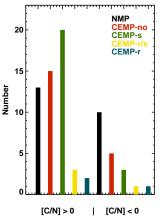


Comparing stars and meteorites (Hansen et al. 2014a)

Element	Isotope						
Мо	92	94	95	96	97	98	100
Ru	96	98	99	100	101	102	104
Process	р	р	r + s	s	r + s	r + s	r

$$\log \epsilon = \log \left(\frac{\frac{i_X}{J_X}_{grain}}{\frac{i_X}{J_X}_{A\&G}} \right) + 1.554.$$

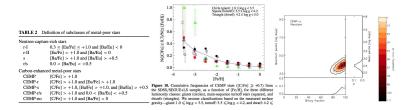



CEMP - why care?

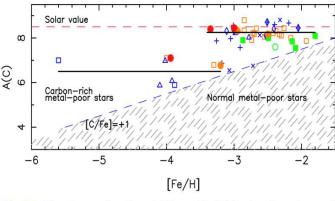
Between 40% and 100% of EMP stars are CEMP stars!

The ~ 10 most metal-poor stars known Keller et al. 2014, Hansen (CJH) et al. 2015

and C-normal: Caffau et al. 2011



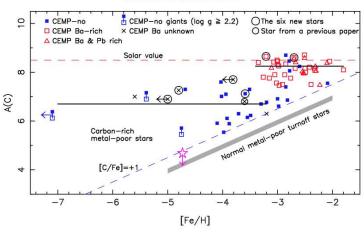
CEMP stars

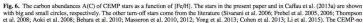

See, e.g., Beers & Christlieb 2005, Aoki et al. 2007, Masseron et al. 2010, Lugaro et al. 2012, Bisterzo 2010,2011, 2012

- Binary fraction increasing with decreasing metallicity.
- CEMP-no, CEMP- $r\sim18\%$ & CEMP-s almost all (> 80%) Lucatello et al. 2005, Lee et al. 2013, Starkenburg et al. 2014, Abate et a. 2015a,b, Hansen (T.T) et al. 2015b,c

CEMP-no and CEMP-s stars - unmixed dwarfs (Spite et al. 2013)

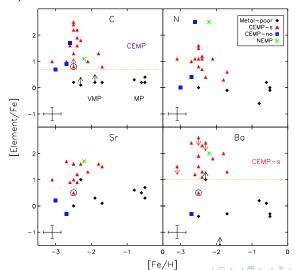
Fig. 14. Abundance of carbon A(C) vs. [Fe/H] in dwarfs and turnoff CEMP stars, following Sivarani et al. (2006, their Table 4), [orange open squares]), Frebel et al. (2005, 2007) [blue open squares], Thompson et al. (2008) [green open circle], Aoki et al. (2009) [blue open diamonds], Behara et al. (2010) [full orange circles]. Placco et al.


Camilla Juul Hansen

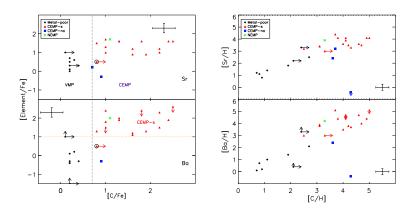

The Dark Cosmology Centre, University of Copenhagen

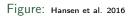
Linking nuclear formation processes and stellar chemical surface composition.

CEMP-no and CEMP-s stars - Extremely/Ultra metal-poor stars (Bonifacio et al. 2015)


Bonifacio et al.: TOPoS: II. C-enhanced stars

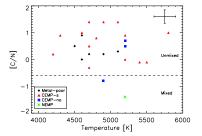
X-shooter CEMP stars (Hansen et al. 2016)





Camilla Juul Hansen

The Dark Cosmology Centre, University of Copenhagen


CEMP-s and -no stars - different from EMP C-normal stars

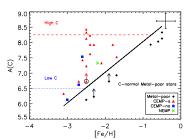


Figure: Hansen et al. 2016

Abundances

CEMP-s vs -no stars - and C-normal stars

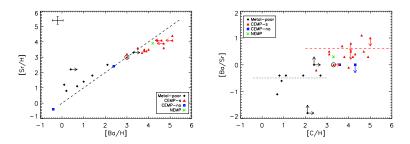


Figure: <[Ba/Sr]> ~ 0.5 for $\sim 2 \rm M_{\odot}$ AGB stars while <[Ba/Sr]> ~ -0.5 matches GCE prediction from spinstars (0 to -1.5). Hansen et al. 2016

GCE of CEMP and C-normal stars Predictions: Cescutti 2008, 2013

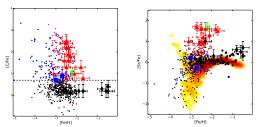
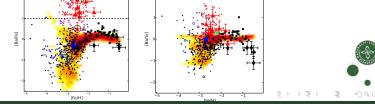
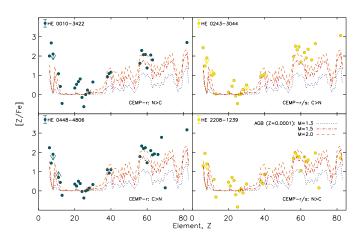
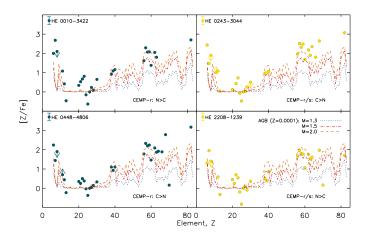
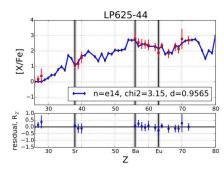




Figure: An r-process + spinstars ([Ba/Sr] ~ 0 to -1.5). Hansen et al. 2016

Camilla Juul Hansen The Dark Cosmology Centre, University of Copenhagen


CEMP-r stars - fallback SN + AGB + ???

CEMP-s/r stars - i-process enriched?


CEMP-s/-r & intermediate i-process

• Massive (M> $4M_{\odot}$) AGB stars (N enhancement via HBB

Lau, Stancliffe & Tout, 2009)

- Models of massive AGB stars predict too low C/N-ratios and too low hs/ls-ratios compared to observations.
- FRUITY AGB yields Cristallo et al. 2011, 2015 match CEMP-s stars. but not CEMP-s/r
- The CEMP-s/r stars can be reproduced by an (i-)process e.g., Abate+ 2015a,b, Mishenina+ 2015,

Figure: Hampel et al. 2016 in prep.

Telescopes

Assumptions (C-normal stars):

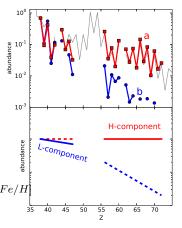
There are 2 robust processes:

main r-process (H), weak r (L).

M1: H=CS22892-052, L=HD122563

M2:

H=CS22892-052, H+L = HD122563


M3:

H+L=CS22892-052, H+L=HD122563

- all stars are mixed Li et al. 2013

$$Y_{calc}(Z) = (C_H Y_H(Z) + C_L Y_L(Z)) * 10^{[Fe/H]}$$

(Hansen et al. 2014b)

Assumptions:

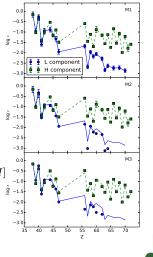
Telescopes

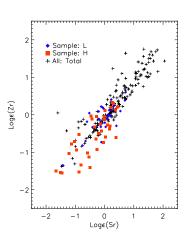
Winds

There are 2 robust processes:

main r-process (H), weak r (L).

M1: H=CS22892-052, L=HD122563


M2: H=CS22892-052, H+L=HD122563


M3: H+L=CS22892-052, H+L=HD122563

- all stars are mixed

$$Y_{calc}(Z) = (C_H Y_H(Z) + C_L Y_L(Z)) * 10^{[Fe/H]}$$

(Hansen et al. 2014b)

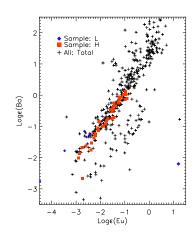
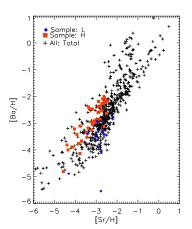
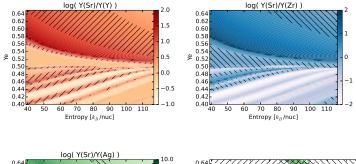
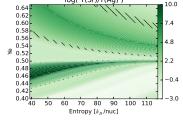
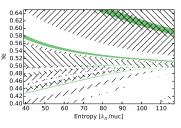


Figure: Robustness of the processes! (Hansen et al, 2014b)


Figure: Differences in Sr and Ba (Hansen et al, 2014b)



4 D > 4 B > 4 E > E

Abundances

Telescopes

Winds

- We can use stellar abundances to constrain the nuclear synthetic formation processes, but it is important to know how the 1D, LTE assumptions affect these abundances.
- The stellar abundances are accurate enough to allow for a
- Some yield predictions are still very uncertain.
- Outlook: 3D, NLTE corrected heavy element abundances.

Conclusion:

Winds

- We can use stellar abundances to constrain the nuclear synthetic formation processes, but it is important to know how the 1D, LTE assumptions affect these abundances.
- The stellar abundances are accurate enough to allow for a distinction between the r- and s-processes confirmed by the meteoritic isotopic abundances.
- Some yield predictions are still very uncertain.
- Outlook: 3D, NLTE corrected heavy element abundances.

Conclusion:

- We can use stellar abundances to constrain the nuclear synthetic formation processes, but it is important to know how the 1D, LTE assumptions affect these abundances.
- The stellar abundances are accurate enough to allow for a distinction between the r- and s-processes confirmed by the meteoritic isotopic abundances.
- Some yield predictions are still very uncertain.
- Outlook: 3D, NLTE corrected heavy element abundances.

- We can use stellar abundances to constrain the nuclear synthetic formation processes, but it is important to know how the 1D, LTE assumptions affect these abundances.
- The stellar abundances are accurate enough to allow for a distinction between the r- and s-processes confirmed by the meteoritic isotopic abundances.
- Some yield predictions are still very uncertain.
- The formation of some CEMP stars remains a puzzle.

Conclusion:

- We can use stellar abundances to constrain the nuclear synthetic formation processes, but it is important to know how the 1D, LTE assumptions affect these abundances.
- The stellar abundances are accurate enough to allow for a distinction between the r- and s-processes confirmed by the meteoritic isotopic abundances.
- Some yield predictions are still very uncertain.
- The formation of some CEMP stars remains a puzzle.
- Outlook: 3D, NLTE corrected heavy element abundances. Better constrained yields based on self-consistent exploding SN models (3D). Large homogeneously analysed samples and more complete abundance patterns - not just for GCE of single elements - but the surveys can be used to find important targets for detailed blue follow-up observations.

Thank you for listening

Winds

