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Outline

• Cool stars are the only astrophysical objects in which we can

conduct a detailed and precise abundance study of up to ∼70

elements

• Stellar parameters, abundances, and assumptions

• Tracing the astrophysical formation site using stellar
abundances

• Meteorites

• CEMP stars

• Galactic chemical evolution

• Yield predictions

Camilla Juul Hansen The Dark Cosmology Centre, University of Copenhagen

Linking nuclear formation processes and stellar chemical surface composition.
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VLT/UVES and LAMOST

Very Large Telescope (VLT) - 8-m mirror

Figure: Simple sketch of a
spectrograph – Massey et al.
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VLT/UVES and LAMOST

Large Sky Area Multi-Object Fiber Spectroscopic Telescope
(LAMOST) — 4-m mirror, 4000 fibres → 10000 stars/night or
2 · 106 stars/year → Surveys

Camilla Juul Hansen The Dark Cosmology Centre, University of Copenhagen

Linking nuclear formation processes and stellar chemical surface composition.
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VLT/UVES and LAMOST

LAMOST vs UVES/VLT spectra

Figure: LAMOST (low resolution R ∼ 1800) and ESO VLT (UVES - high
resolution R ∼ 40000)
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Linking nuclear formation processes and stellar chemical surface composition.
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VLT/UVES and LAMOST

LAMOST vs UVES/VLT spectra

Figure: LAMOST (low resolution R ∼ 1800) with noise and ESO VLT
(UVES - high resolution R ∼ 40000)

Important: Sr may be the only heavy element for which we will be
able to derive abundances in low-resolution spectra.

Camilla Juul Hansen The Dark Cosmology Centre, University of Copenhagen
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Stellar spectra – 2D to 1D
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Stellar spectra and equivalent width (W)

Camilla Juul Hansen The Dark Cosmology Centre, University of Copenhagen

Linking nuclear formation processes and stellar chemical surface composition.
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Abundance - W - log gf relation; the impact of stellar parameters
and atomic data

log W = log(const) + log(A) + log(gfλ)− θχ− log(κ) (1)

Hansen et al, 2012

Since the UV-region of the spectra is crowded we have to carry out
spectral synthesis on line lists with accurate atomic data.

Camilla Juul Hansen The Dark Cosmology Centre, University of Copenhagen

Linking nuclear formation processes and stellar chemical surface composition.
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Two ways of deriving abundances:

• Equivalent width and synthetic spectra

• We need to know the stellar parameters:
Temperature, gravity,
metallicity and velocity (small scale)

• Model atmosphere (e.g. MARCS)
and synthetic spectrum code (e.g. MOOG)

• Assumptions: 1D, LTE –
one local temperature, black body radiation
(Planck), Maxwellian velocity distribution,
Boltzmann and Saha describe excitation and ionisation

• Line lists with atomic and molecular
information
(excitation potential and log gf)

Camilla Juul Hansen The Dark Cosmology Centre, University of Copenhagen

Linking nuclear formation processes and stellar chemical surface composition.
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Temperature, gravity and metallicity

• The color of a star depends on two factors: Temperature and
metallicity

• Color (V-K) calibration Alonso et al. 1999, Casagrande et al. 2010:
T = a+ b(V −K) + c(V −K)2 + d(V −K)[Fe/H] + ....

• Excitation potential - based on Fe lines (NLTE sensitive)

• Parallax/distance (π) e.g., Nissen et al. 1997:
log g

gSun
= log M

MSun
+ 4 T

TSun
+ 0.4Vo + 2log(π) + corrections

• Ionisation equilibrium from Fe lines (NLTE sensitive)

• Metallicity ([Fe/H]) from equivalent widths of Fe lines

Camilla Juul Hansen The Dark Cosmology Centre, University of Copenhagen

Linking nuclear formation processes and stellar chemical surface composition.
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Abundances for Astronomers (spectroscopists)

log ǫ(Element) = log(NElement/NH) + 12 (2)

where

log(NH) = 12 (3)

Abundances for Theoreticians
X = H (mass fraction: ∼ 0.75),
Y = He (∼ 0.25), and
Z = Li and heavier (< 0.01)

Camilla Juul Hansen The Dark Cosmology Centre, University of Copenhagen

Linking nuclear formation processes and stellar chemical surface composition.
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Stellar spectra, abundances, and [Fe/H]

[Fe/H] ≡ log(NFe/NH)∗ − log(NFe/NH)⊙ (4)

Figure: Top: Solar ([Fe/H] = 0) spectrum – Mg triplet. Bottom: Star with [Fe/H] ∼ -5.
Christlieb +2004

Camilla Juul Hansen The Dark Cosmology Centre, University of Copenhagen

Linking nuclear formation processes and stellar chemical surface composition.
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Figure: Observational abundance biases (Hansen et al, 2014b)
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Linking nuclear formation processes and stellar chemical surface composition.
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Observable elements - with high-resolution instruments

Figure: Blue: ground based observations, green: space, yellow: isotopic abundances

Camilla Juul Hansen The Dark Cosmology Centre, University of Copenhagen

Linking nuclear formation processes and stellar chemical surface composition.



Telescopes Abundances Assumptions n-captures 2. r-process Yields & GCE Winds

Record holding star
- CS31082-001
Abundances
of almost 70 elements,
37 of which are heavy elements.
Siqueira Mello et al. 2013

Camilla Juul Hansen The Dark Cosmology Centre, University of Copenhagen

Linking nuclear formation processes and stellar chemical surface composition.
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Another record holding star:
Keller et al. 2014: [Fe/H] < 7.1 - origin SN II of M∼ 60M⊙

Bessel et al. 2015 (3D, NLTE corrections) → 40M⊙ SN

Camilla Juul Hansen The Dark Cosmology Centre, University of Copenhagen

Linking nuclear formation processes and stellar chemical surface composition.
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Sr GCE

• Big Bang Nucleosynthesis:
H,He, and Li

• SN type II: α-elements

• SN type Ia: Fe-peak elements

• Neutron-capture processes
(most heavy isotopes)
SN, NSM, AGB,...

Camilla Juul Hansen The Dark Cosmology Centre, University of Copenhagen

Linking nuclear formation processes and stellar chemical surface composition.
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Assumptions: LTE vs NLTE - the impact on stellar parameters

1 2 3 4 5
log gLTE

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

lo
g 

g N
LT

E
 -

 lo
g 

g L
T

E

giants
dwarfs

-5 -4 -3 -2 -1 0
[Fe/H]LTE

-0.1

0.0

0.1

0.2

0.3

0.4

[F
e/

H
] N

LT
E
 -

 [F
e/

H
] L

T
E giants

dwarfs

Figure: Hansen et al. 2013
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Linking nuclear formation processes and stellar chemical surface composition.
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Assumptions: LTE vs NLTE - Strontium

Figure: Hansen et al. 2013

Camilla Juul Hansen The Dark Cosmology Centre, University of Copenhagen

Linking nuclear formation processes and stellar chemical surface composition.



Telescopes Abundances Assumptions n-captures 2. r-process Yields & GCE Winds

Chemical evolution of Sr
Yields from faint SN II (Wanajo et al.) Hansen et al. 2013
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Chemical evolution of Sr
Yields from ν–driven winds (Arcones & Montes) Hansen et al. 2013
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Linking nuclear formation processes and stellar chemical surface composition.
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Chemical evolution of Sr
Yields from massive fast rotating stars (Frischknecht et al.) Hansen et al. 2013
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The chemical evolution of Sr – LTE vs NLTE
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Figure: Hansen et al. 2013
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Linking nuclear formation processes and stellar chemical surface composition.
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The uncertain yields can cover a large range of stellar abundances.
Despite uncertainties we can still make quantitative predictions
such as:

• Massive stars may facilitate an early s-process which creates
small amounts of Sr.

• Faint CC SN are well constrained due to the selfconsistent 2D
models and match the observations fairly well (despite slight
overpredictions).

• ν-driven winds are promising but need to be better
constrained.

Camilla Juul Hansen The Dark Cosmology Centre, University of Copenhagen

Linking nuclear formation processes and stellar chemical surface composition.
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Neutron-capture Processes

Scatter and multiple formation processes

• Weak s-process: Z ∼< 40 (or 42)

• Main s-process - broad atomic range
- typically Ba (Z = 56) and heavier

• Weak r-process: 40 < Z < 50

• Main r-process - possibly full range
- or Z > 50 (Hansen et al. 2014b)

Camilla Juul Hansen The Dark Cosmology Centre, University of Copenhagen

Linking nuclear formation processes and stellar chemical surface composition.
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Neutron-capture Processes

Abundance star-to-star scatter and the 2nd/weak r-process
Figure: Hansen et al. 2011, 2012,

Cowan et al. 2011 (below)
• HD122563 - proto weak r star

• Large star-to-star scatter for
n-capture elements
(e.g. Sr & Ba)

Camilla Juul Hansen The Dark Cosmology Centre, University of Copenhagen

Linking nuclear formation processes and stellar chemical surface composition.
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Neutron-capture Processes

Selected elements

Camilla Juul Hansen The Dark Cosmology Centre, University of Copenhagen

Linking nuclear formation processes and stellar chemical surface composition.
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Neutron-capture Processes

Near-UV – blue spectra (Hansen et al. 2012, 2014a)

log W = log(const) + log(A) + log(gfλ)− θχ− log(κ) (5)

Camilla Juul Hansen The Dark Cosmology Centre, University of Copenhagen

Linking nuclear formation processes and stellar chemical surface composition.
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Neutron-capture Processes

Galactic chemical evolution of Mo and Ru

[Fe/H] ≡ log(NFe/NH)∗ − log(NFe/NH)⊙ (6)

Figure: Hansen et al, 2014

Camilla Juul Hansen The Dark Cosmology Centre, University of Copenhagen

Linking nuclear formation processes and stellar chemical surface composition.
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Neutron-capture Processes

Galactic chemical evolution of Pd and Ag

Figure: Hansen et al, 2012

Camilla Juul Hansen The Dark Cosmology Centre, University of Copenhagen

Linking nuclear formation processes and stellar chemical surface composition.
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Neutron-capture Processes

r-poor vs r-rich stars: HD122563 & CS31082-001
(Honda et al,2006, Hill et al, 2002 & Hansen et al, 2012)

Camilla Juul Hansen The Dark Cosmology Centre, University of Copenhagen

Linking nuclear formation processes and stellar chemical surface composition.
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Sr - Eu

Correlation - Anticorrelation
If two elements are created by the same process, they most likely
grow in the same way (correlate).
Elements (38< Z < 50) are generally found to anti-correlate with
Z > 56 elements (Burris et al, 2000, Montes et al, 2007, Francois et al 2007)

Camilla Juul Hansen The Dark Cosmology Centre, University of Copenhagen

Linking nuclear formation processes and stellar chemical surface composition.
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Sr - Eu

Weak/main s/r-process elements - Sr (85% s), Ba (81% s) and Eu
(94% r) Arlandini et al 1999 Hansen et al, 2012

Camilla Juul Hansen The Dark Cosmology Centre, University of Copenhagen

Linking nuclear formation processes and stellar chemical surface composition.
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Sr - Eu

Weak r-process elements: Ru, Pd, and Ag Hansen et al 2012, 2014a

Camilla Juul Hansen The Dark Cosmology Centre, University of Copenhagen

Linking nuclear formation processes and stellar chemical surface composition.
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Sr - Eu

Ru not main s or main r (Hansen et al. 2014a)

Camilla Juul Hansen The Dark Cosmology Centre, University of Copenhagen

Linking nuclear formation processes and stellar chemical surface composition.
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Sr - Eu

Two r-processes
Ru, Pd, and Ag are formed by the weak r-process

• The main r-process creates the heaviest elements (Z > 56) in
a very robust way

• The ’weak’ r-process creates the intermediately heavy (37 < Z
< 50) - range uncertain

• Possible formation sites are neutron star (NS) mergers (main
r), and ECSN, ν-driven winds (weak r)

Camilla Juul Hansen The Dark Cosmology Centre, University of Copenhagen

Linking nuclear formation processes and stellar chemical surface composition.
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Sr - Eu

Comparing stars and meteorites
(Hansen et al. 2014a)

Element Isotope
Mo 92 94 95 96 97 98 100
Ru 96 98 99 100 101 102 104

Process p p r + s s r + s r + s r

log ǫ = log







iX
jX grain

iX
jX A&G






+ 1.554.

Camilla Juul Hansen The Dark Cosmology Centre, University of Copenhagen

Linking nuclear formation processes and stellar chemical surface composition.
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CEMP - why care?
Between 40% and 100% of EMP stars are CEMP stars!
The ∼ 10 most metal-poor stars known
Keller et al. 2014, Hansen (CJH) et al. 2015

and C-normal: Caffau et al. 2011
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Linking nuclear formation processes and stellar chemical surface composition.
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CEMP stars

See, e.g., Beers & Christlieb 2005, Aoki et al. 2007, Masseron et al. 2010, Lugaro et al. 2012, Bisterzo

2010,2011, 2012

• Binary fraction increasing with decreasing metallicity.

• CEMP-no, CEMP-r ∼ 18% & CEMP−s - almost all (> 80%)
Lucatello et al. 2005, Lee et al. 2013, Starkenburg et al. 2014, Abate et a. 2015a,b, Hansen

(T.T) et al. 2015b,c

Camilla Juul Hansen The Dark Cosmology Centre, University of Copenhagen

Linking nuclear formation processes and stellar chemical surface composition.
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CEMP-no and CEMP-s stars - unmixed dwarfs
(Spite et al. 2013)

Camilla Juul Hansen The Dark Cosmology Centre, University of Copenhagen

Linking nuclear formation processes and stellar chemical surface composition.
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CEMP-no and CEMP-s stars - Extremely/Ultra metal-poor stars
(Bonifacio et al. 2015)

Camilla Juul Hansen The Dark Cosmology Centre, University of Copenhagen

Linking nuclear formation processes and stellar chemical surface composition.
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X-shooter CEMP stars
(Hansen et al. 2016)

Camilla Juul Hansen The Dark Cosmology Centre, University of Copenhagen

Linking nuclear formation processes and stellar chemical surface composition.



Telescopes Abundances Assumptions n-captures 2. r-process Yields & GCE Winds

CEMP-s and -no stars - different from EMP C-normal stars

Figure: Hansen et al. 2016

Camilla Juul Hansen The Dark Cosmology Centre, University of Copenhagen

Linking nuclear formation processes and stellar chemical surface composition.



Telescopes Abundances Assumptions n-captures 2. r-process Yields & GCE Winds

CEMP-s and -no stars - different from EMP C-normal stars
This is in agreement with the recent findings Bonifacio et al. 2015

Figure: Hansen et al. 2016

Camilla Juul Hansen The Dark Cosmology Centre, University of Copenhagen

Linking nuclear formation processes and stellar chemical surface composition.
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CEMP-s vs -no stars - and C-normal stars

Figure: <[Ba/Sr]> ∼ 0.5 for ∼ 2M⊙ AGB stars while <[Ba/Sr]> ∼ −0.5
matches GCE prediction from spinstars (0 to −1.5). Hansen et al. 2016

Camilla Juul Hansen The Dark Cosmology Centre, University of Copenhagen

Linking nuclear formation processes and stellar chemical surface composition.
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GCE of CEMP and C-normal stars Predictions: Cescutti 2008, 2013
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Figure: An r-process + spinstars ([Ba/Sr]∼ 0 to −1.5). Hansen et al. 2016
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Linking nuclear formation processes and stellar chemical surface composition.
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CEMP-r stars - fallback SN + AGB + ???
Hansen (CJH) et al. 2015

Camilla Juul Hansen The Dark Cosmology Centre, University of Copenhagen

Linking nuclear formation processes and stellar chemical surface composition.
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CEMP-s/r stars - i-process enriched?

Camilla Juul Hansen The Dark Cosmology Centre, University of Copenhagen

Linking nuclear formation processes and stellar chemical surface composition.
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CEMP−s/− r & intermediate i−process

• Massive (M> 4M⊙) AGB stars

(N enhancement via HBB

Lau, Stancliffe & Tout, 2009)
• Models of massive AGB stars

predict too low C/N-ratios

and too low hs/ls-ratios

compared to observations.

• FRUITY AGB yields
Cristallo et al. 2011, 2015

match CEMP−s stars,

but not CEMP−s/r

• The CEMP−s/r stars can be

reproduced by an (i−)process
e.g., Abate+ 2015a,b, Mishenina+ 2015,

Figure: Hampel et al. 2016 in prep.

Camilla Juul Hansen The Dark Cosmology Centre, University of Copenhagen

Linking nuclear formation processes and stellar chemical surface composition.
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Winds
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Ycalc(Z) = (CHYH(Z) + CLYL(Z)) ∗ 10[Fe/H]

(Hansen et al. 2014b)

Camilla Juul Hansen The Dark Cosmology Centre, University of Copenhagen
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Winds
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M2: H=CS22892-052, H+L = HD122563
M3: H+L=CS22892-052, H+L=HD122563

- all stars are mixed

Ycalc(Z) = (CHYH(Z) + CLYL(Z)) ∗ 10[Fe/H]

(Hansen et al. 2014b)

Camilla Juul Hansen The Dark Cosmology Centre, University of Copenhagen
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Winds

Figure: Robustness of the processes! (Hansen et al, 2014b)

Camilla Juul Hansen The Dark Cosmology Centre, University of Copenhagen

Linking nuclear formation processes and stellar chemical surface composition.
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Winds

Figure: Differences in Sr and Ba (Hansen et al, 2014b)

Camilla Juul Hansen The Dark Cosmology Centre, University of Copenhagen

Linking nuclear formation processes and stellar chemical surface composition.
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Winds
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Linking nuclear formation processes and stellar chemical surface composition.
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Winds

Conclusion:

• We can use stellar abundances to constrain the nuclear
synthetic formation processes, but it is important to know how
the 1D, LTE assumptions affect these abundances.

• The stellar abundances are accurate enough to allow for a
distinction between the r- and s-processes confirmed by the
meteoritic isotopic abundances.

• Some yield predictions are still very uncertain.

• The formation of some CEMP stars remains a puzzle.

• Outlook: 3D, NLTE corrected heavy element abundances.
Better constrained yields based on self-consistent exploding SN
models (3D). Large homogeneously analysed samples and
more complete abundance patterns - not just for GCE of single
elements - but the surveys can be used to find important
targets for detailed blue follow-up observations.
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Thank you for listening
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