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Nuclear burning stages

(e.g., 20 solar mass star)
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Nucleosynthesis Iin Core Collapse
Supernovae
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¢ Element production from the nucleosynthesis in the pre-explosive evolution:
C, O, Na, Mg, s process (Cu, Ga, Ge)

¢ Element production from the nucleosynthesis in the CCSN:
Si, Ca, S, Ti, iron group, p process (yYp- and vp-), n process, a process, (r process?)



Carbon is primary, and nitrogen is a secondary product.
At low metallicities an extra source of N is needed to explain observations:
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Kobayashi et al. 2011, MNRAS
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i 1 i While rotation can solve the problem
4000 - ~ for N production, it cannot solve

i . the low production of N15!
3000 N (e.g., Heger et al. 2000, Meynet et al. 2006)
2000 ] Can Novae be the solution?

i i Galaxies at high redshift (e.g., Muller et al. 2006),
1000 o star-forming regions in LMC, (post-)starburst galaxy

i i NGC 4945 (Chin et al. 1999, ApJL) show low N14/N15.

- @ - N15 should be made in massive stars.
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Presolar grains zoo

Hoppe 2010 PoS

Croat et al. 2010, AJ 139

Graphite (and a SiC
in the center)



CCSN remnant

Cas A

11000 ly
~ 300 years ago

See Grefenstette et al. 2014, Nature
(NuSTAR data)

Presolar grain from an old CCSN

From Reto Trappitsch (Uni of Chicago)

unknown
? - (today in a lab)
~ 4.5-5 Gyrs ago

Zinner 2014, Tr. Geochem.



To make the long story short:
the presolar grain journey from stars to us
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The analysis to disentangle the origin of different types of presolar grains
IS based on the comparison between their isotopic composition and stellar models.

C and N isotopic ratios are key diagnostics

m Mainstream ~93% o AB grains 4-5% to identify the stellar source
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The Nova grain 334-2 with typical CCSN signatures,
including “Ti enrichment.
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H Envelope

He/N
—
He/C

o/C

C/IO>1

C-rich grains require a
stellar environment with
C>0 to condense.

Meyer et al. 1995, Met 30.
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H ingestion in He-burning layers

* Multi-dimensional hydrodynamics
simulations needed to solve this
problem right.

« 1D hydrostatic models have a poor
predictive power, but with good
nuclear physics important constraints
can be derived.

+ For other hydrodynamics simulations of H ingestion
(at low metallicity): Mokak et a. 2011 A&A,
Stancliffe et al. 2011 ApJ

+ Herwig et al. 2014, ApJL 792
+ Woodward et al. 2015, ApJ 798, 49
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Large production of C13 and N14 during the H ingestion.
Some N15 is made, but according to present models not as much as N14
(ongoing effort to measure N14/N15 ratio in the Sakurai's object using ALMA).
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Mass Fraction

Model 25T
Metallicity = Z=0.02

Explosive He shell nucleosynthesis

With alive H ingested
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H ingestion gives the conditions
to produce large amount of N15
in the He shell during the CCSN
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Explosive He-burning conditions in CCSN
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GCE calculations, using N yields from massive stars
iIncluding H ingestion.
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How frequent is the H
Ingestion/shell merger?
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Important impact also for the *Al/”Fe
story and for the Ne-E(L) in presolar LD
graphites.
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Summary

» Present 1D stellar models cannot reproduce consistently the GCE of Nitrogen. Why? The
N15 made is not enough, and Novae cannot supply the N15 observed at low metallicity and
at high redshift. The source must be CCSNe.

* Nuclear physics tells that rotation cannot be the physics mechanism to make N15 in
massive stars.

» Presolar grains from supernovae tells that nova-like conditions can be obtained in the He
shell material of CCSNe. This naturally provide the condition to explain grains observations
for different isotopic ratios. In particular, presolar grains carry the signature of a strong
production of N15. GCE likes that to fit the N isotopic ratio.

» The physics event that allow to fit presolar grains observations is H ingestion in He-burning
material, before the SN shock is reaching the He shell. It is also required that there is some
H still present in the He-rich material to efficiently make N15 (and Na22, Al26, ...!).

» 1D models tell that we are moving in the right direction, but for definitive conclusions the full
hydrodynamics simulations are needed.

* Is this all real? Can we understand better the old supernovae that made these grains?
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