Samuel A. Giuliani[†], G. Martínez Pinedo[†], L. M. Robledo[‡]

Technische Universität Darmstadt, Darmstadt, Germany [‡]Universidad Autónoma de Madrid, Madrid, Spain

January 18, 2016

NAVI Physics Days

 ${
m GSI}-{
m Darmstadt}$

Introduction	Fission within the EDF	BCPM fission properties	Dynamic fission 000	Conclusions

Outline

- 1. Fission and the r-process nucleosynthesis
- Fission within the Energy Density Functional model Potential energy surfaces and collective inertias Fission observables
- Fission properties of the BCPM EDF Comparison with experimental data The superheavy landscape Comparison with theoretical models
- 4. Spontaneous fission: state-of-the-art calculations A more sophisticated model for SF Dynamic fission: $^{240}{\rm Pu}$ and $^{234}{\rm U}$
- 5. Conclusions

Introduction	Fission within the EDF	BCPM fission properties	Dynamic fission	Conclusions

Outline

- 1. Fission and the r-process nucleosynthesis
- Fission within the Energy Density Functional model Potential energy surfaces and collective inertias Fission observables
- Fission properties of the BCPM EDF Comparison with experimental data The superheavy landscape Comparison with theoretical models
- 4. Spontaneous fission: state-of-the-art calculations A more sophisticated model for SF Dynamic fission: $^{240}{\rm Pu}$ and $^{234}{\rm U}$
- 5. Conclusions

Introduction	Fission within the EDF	BCPM fission properties	Dynamic fission 000	Conclusions

R-process abundances distribution

• Mechanism for a robust r-process?

N=184

fission recycling

Role of fission in NSM r-process nucleosynthesis:

- ► Goriely and Martínez-Pinedo, Nucl. Phys. A944 (2015);
- Eichler et al., Astrophys. J. 808, 30 (2015) and
- Mendoza-Temis et al., Phys. Rev. C 92, 055805 (2015) → M.-R. Wu talk!.

r-process path

Introduction	Fission within the EDF	BCPM fission properties	Dynamic fission 000	Conclusions

Outline

1. Fission and the r-process nucleosynthesis

- Fission within the Energy Density Functional model Potential energy surfaces and collective inertias Fission observables
- Fission properties of the BCPM EDF Comparison with experimental data The superheavy landscape Comparison with theoretical models
- 4. Spontaneous fission: state-of-the-art calculations A more sophisticated model for SF Dynamic fission: $^{240}{\rm Pu}$ and $^{234}{\rm U}$
- 5. Conclusions

20 30 40 50 60 7 Q₂₀ [b]

Fission within the Energy Density Functional approach

Potential Energy Surface

Energy evolution from the ground state to the scission point.

Relevant degrees of freedom?

SAG, Robledo and Rodríguez-Guzmán, PRC 90 (2014).

Collective inertias

Resistance of the nucleus against the deformation forces.

Fission observables

- Parameters defining the potential energy surface:
 - inner and outer fission barrier heights,
 - isomer excitation energy.
- ► Fission lifetimes *t*_{sf}:
 - probability of tunneling under the fission barrier.

Introduction	Fission within the EDF	BCPM fission properties	Dynamic fission	Conclusions
	000	000	000	

Theory of spontaneous fission lifetimes

Semiclassical approach given by the WKB formalism:

$$t_{sf} = 2.86 \times 10^{-21} (1 + \exp(2S)).$$

Action along the fission path $L(s) = L(Q_{20})$:

Fission path given by:

minimization of the energy (static approach).

Introduction	Fission within the EDF	BCPM fission properties	Dynamic fission 000	Conclusions

Outline

- 1. Fission and the r-process nucleosynthesis
- Fission within the Energy Density Functional model Potential energy surfaces and collective inertias Fission observables
- Fission properties of the BCPM EDF Comparison with experimental data The superheavy landscape Comparison with theoretical models
- 4. Spontaneous fission: state-of-the-art calculations A more sophisticated model for SF Dynamic fission: $^{240}{\rm Pu}$ and $^{234}{\rm U}$
- 5. Conclusions

BCPM barrier heights and isomer energy BCPM: Baldo et al., PRC87 (2013)

Exp: Sing et al., Nucl. Data Sheets 97, 241 (2002); R. Capote et al., Nucl. Data Sheets 110, 3107 (2009).

SAG and Robledo, Phys. Rev. C88, 054325 (2013)

- Outer barriers and isomer energies quite well reproduced for all nuclei.
- Inner barriers are reduced when triaxiality is allowed (Erler+(2012), Guzmán+(2014)).

Introduction Fi	ission within the EDF	BCPM fission properties	Dynamic fission	Conclusions
00	00	000	000	

Introduction Fi	ission within the EDF	BCPM fission properties	Dynamic fission	Conclusions
00	00	000	000	

SAG, Martínez-Pinedo and Robledo, PoS (NIC XIII) 095, (2014).

SAG, Martínez-Pinedo and Robledo, PoS (NIC XIII) 095, (2014).

SAG, Martínez-Pinedo and Robledo, PoS (NIC XIII) 095, (2014).

SAG, Martínez-Pinedo and Robledo, PoS (NIC XIII) 095, (2014).

Fission barriers are not everything!

SAG, Martínez-Pinedo and Robledo, PoS (NIC XIII) 095, (2014).

SAG, Martínez-Pinedo and Robledo, PoS (NIC XIII) 095, (2014).

Nuclei with $B_f - 0.5 \times S_{2n} \leq 2$ MeV will fission after capturing a neutron

BSk14:

$$B = 0.054 A^{5/3} \,\mathrm{MeV}^{-1}$$

BCPM:

$$B(Q_{20}) = \frac{1}{2} \frac{(M_{-2})^2}{(M_{-1})^3} \quad \text{with} \quad M_{(-n)} = \sum_{\alpha > \beta} \frac{|\langle \alpha \beta | Q_{20} | 0 \rangle|^2}{(E_{\alpha} + E_{\beta})^n}$$

Introduction	Fission within the EDF	BCPM fission properties	Dynamic fission	Conclusions

Outline

- 1. Fission and the r-process nucleosynthesis
- Fission within the Energy Density Functional model Potential energy surfaces and collective inertias Fission observables
- Fission properties of the BCPM EDF Comparison with experimental data The superheavy landscape Comparison with theoretical models
- 4. Spontaneous fission: state-of-the-art calculations A more sophisticated model for SF Dynamic fission: $^{240}{\rm Pu}$ and $^{234}{\rm U}$

5. Conclusions

Introduction	Fission within the EDF	BCPM fission properties	Dynamic fission ●○○	Conclusions

A more sophisticated model for SF

$$t_{SF} \sim \exp(2S) \quad \Leftarrow \quad S(L) = \int_a^b ds \sqrt{2 \times B(s)[E(s) - E_0]}$$

Expand the multidimensional PES: relevant d.o.f. in s?

- ▶ Deformation multipoles: $Q_{20} \Rightarrow Q_{20}, Q_{22}, Q_{30}, \dots$
- Pairing correlations Δ.

How to determine the fission path L(s)?

- minimizing the energy E(s): static approximation, or
- minimizing the action S(L): dynamic approach.

State-of-the-art SF calculations: Sadhukhan et al, PRC88(2013) and PRC90(2014); SAG et al, PRC90(2014); Yao et al, PRC92(2015).

Static vs dynamic fission: 240 Pu and 234 U

Triaxial case: ²⁴⁰Pu - SkM* interaction

from Shadukhan et al., PRC90(2014).

dynamic paths: 2D: $s = \{Q_{20}, Q_{22}\}$ 3D: $s = \{Q_{20}, Q_{22}, \Delta N^2\}$

Static vs dynamic fission: 240 Pu and 234 U

Triaxial case: ²⁴⁰Pu - SkM* interaction

from Shadukhan et al., PRC90(2014).

dynamic paths: 2D: $s = \{Q_{20}, Q_{22}\}$ 3D: $s = \{Q_{20}, Q_{22}, \Delta N^2\}$

Static vs dynamic fission: ²⁴⁰Pu and ²³⁴U

Triaxial case: ²⁴⁰Pu - SkM* interaction

from Shadukhan et al., PRC90(2014).

dynamic paths: 2D: $s = \{Q_{20}, Q_{22}\}$ 3D: $s = \{Q_{20}, Q_{22}, \Delta N^2\}$

Pairing fluctuations restore the axial symmetry (artifact?)!

Introduction	Fission within the EDF 000	BCPM fission properties	Dynamic fission ○O●	Conclusions

Static vs dynamic fission: 240 Pu and 234 U

Axial case: $^{234}\mbox{U}$ - BCPM interaction

Method	$t_{sf}(s)$
E_{\min} (static)	0.81×10^{43}
$S_{\min}(Q_{20}, Q_{30})$	0.44×10^{42}
$S_{\sf min}(Q_{20}, Q_{40})$	0.12×10^{43}
$S_{\min}(Q_{20},\Delta N^2)$	0.18×10^{23}

SAG, Robedo and Guzmán-Rodriguez PRC90(2014).

Pairing fluctuations decrease the t_{sf} (20 OM!).

Introduction	Fission within the EDF 000	BCPM fission properties	Dynamic fission ○O●	Conclusions

Static vs dynamic fission: 240 Pu and 234 U

Axial case: $^{234}\mathrm{U}$ - BCPM interaction

Method	$t_{sf}(s)$		
E_{\min} (static)	0.81×10^{43}		
$S_{\min}(Q_{20}, Q_{30})$	0.44×10^{42}		
$S_{\sf min}(Q_{20}, Q_{40})$	0.12×10^{43}		
$S_{\min}(Q_{20},\Delta N^2)$	0.18×10^{23}		

SAG, Robedo and Guzmán-Rodriguez PRC90(2014).

Pairing fluctuations decrease the t_{sf} (20 OM!).

Conclusion

Fission properties strongly modified by pairing fluctuations!

Introduction	Fission within the EDF	BCPM fission properties	Dynamic fission 000	Conclusions

Outline

- 1. Fission and the r-process nucleosynthesis
- Fission within the Energy Density Functional model Potential energy surfaces and collective inertias Fission observables
- Fission properties of the BCPM EDF Comparison with experimental data The superheavy landscape Comparison with theoretical models
- 4. Spontaneous fission: state-of-the-art calculations A more sophisticated model for SF Dynamic fission: $^{240}{\rm Pu}$ and $^{234}{\rm U}$

5. Conclusions

Introduction	Fission within the EDF	BCPM fission properties	Dynamic fission 000	Conclusions

Conclusions

- ► Fission plays a crucial role in r-process nucleosynthesis.
- EDFs give a good qualitative description of the fission process.
- However, theoretical predictions affected from several uncertainties (choice of the d.o.f., collective inertias...).
- BCPM superheavy landscape:
 - peak of stability around N = 184 and Z = 104,
 - production of SH nuclei inhibited by neutron-induced fission.

Take-away messages:

- Fission barriers are not everything!
- Pairing fluctuations strongly modify fission properties!

► Future work:

- Computation of fission rates and fragments distribution.
- Improve computation of collective masses.

Introduction	Fission within the EDF 000	BCPM fission properties	Dynamic fission 000	Conclusions

THANK YOU

Minimizing the action: $B(\Delta N^2)$ vs $E(\Delta N^2)$ - 234 U

$$S = \int_{a}^{b} ds \sqrt{2 \times B(s) [E(s) - E_{0}]}$$

$$S = \int_{a}^{1768} ds \sqrt{2 \times B(s) [E(s) - E_{0}]}$$

$$S = \int_{a}^{1769} ds \sqrt{2 \times B(s) [E(s) - E_{0}]}$$

$$S = \int_{a}^{1769} ds \sqrt{2 \times B(s) [E(s) - E_{0}]}$$

$$S = \int_{a}^{1769} ds \sqrt{2 \times B(s) [E(s) - E_{0}]}$$

$$S = \int_{a}^{1769} ds \sqrt{2 \times B(s) [E(s) - E_{0}]}$$

$$S = \int_{a}^{1769} ds \sqrt{2 \times B(s) [E(s) - E_{0}]}$$

$$S = \int_{a}^{1769} ds \sqrt{2 \times B(s) [E(s) - E_{0}]}$$

$$S = \int_{a}^{1769} ds \sqrt{2 \times B(s) [E(s) - E_{0}]}$$

The least action path

The least action path (black) strongly differ from the least energy one (red)!

Fission barriers and \textbf{E}_0 - $^{244}\textbf{U}$

$$S = \int_{a}^{b} ds \sqrt{2 \times B(s) [E(s) - E_0]}$$

Spontaneous fission lifetimes (BCPM results)

The BCPM functional

with

The energy of a finite nucleus is given by

$$E = T_0 + E_{int}^{\infty} + E_{int}^{FR} + E^{s.o.} + E_C + E_{pair}$$
$$E_{int}^{\infty}[\rho_p, \rho_n] = \int d\vec{r} \Big[P_s(\rho)(1-\beta^2) + P_n(\rho)\beta^2 \Big] \rho$$
$$\rho(\vec{r}) = \rho_n(\vec{r}) + \rho_p(\vec{r}) \text{ and } \beta(\vec{r}) = (\rho_n(\vec{r}) - \rho_p(\vec{r}))/\rho(\vec{r}).$$

 P_s and P_n are polynomial fits to reproduce microscopic EoS in nuclear matter.

Phenomenological surface contribution

$$E_{int}^{FR}[\rho_n, \rho_p] = \frac{1}{2} \sum_{t,t'} \iint d\vec{r} d\vec{r'} \rho_t(\vec{r}) v_{t,t'}(\vec{r} - \vec{r'}) \rho_{t'}(\vec{r'})$$

with $v_{t,t'}(r) = V_{t,t'} e^{-r^2/r_0 tt^2}$; $V_{n,n} = V_{p,p} = V_L = 2\tilde{b}_1/(\pi^{3/2}r_{0L}^3\rho_0)$; $V_{n,p} = V_{p,n} = V_U = (4a_1 - 2\tilde{b}_1)/(\pi^{3/2}r_{0U}^3\rho_0)$.

M.Baldo et al. Phys. Lett. B663 (2008) 390; Phys. Rev. C87 064305 (2013)

Remaining contributions to the EDF

Coulomb

Direct
$$E_C^H = (1/2) \iint d\vec{r} d\vec{r'} \rho_p(\vec{r}) |\vec{r} - \vec{r'}|^{-1} \rho_p(\vec{r'})$$

Exchange: $E_C^{ex} = -(3/4)(3/\pi)^{1/3} \int d\vec{r} \rho_p(\vec{r})^{4/3}$

Spin-Orbit

$$\hat{v}_{ij}^{so} = i W_{LS} (ec{\sigma}_i + ec{\sigma}_j) \cdot [ec{k}' imes \delta(ec{r}_i - ec{r}_j)ec{k}]$$

Free parameters

 W_{LS} and r_{0L}, r_{0U}

Pairing Correlations (E. Garrido et al. Phys. Rev. C 60, 064312 (1999))
 Zero-range interaction,

$$v^{pp}(
ho(ec r)) = \eta imes rac{v_0}{2} \left[1 - \gamma \left(rac{
ho(ec r)}{
ho_0}
ight)^lpha
ight], \qquad
ho_0 = rac{2}{3\pi^2} k_F^3.$$

 $\eta \equiv$ multiplicative parameter setting the pairing strength...