Oliver Busch - GSI Darmstadt

D. Adamová ^a, G. Agakichiev^b, D. Antonczyk^b, A. Andronic^b, H. Appelshäuser^b, V. Belaga^c,

J. Bielčíková^{*d*}, P. Braun-Munzinger^{*b*}, O. Busch^{*b*}, R. Campagnolo^{*d*}, A. Cherlin^{*e*}, S. Damjanović^{*d*},

T. Dietel^d, L. Dietrich^d, A. Drees^f, S. I. Esumi^d, K. Filimonov^d, K. Fomenko^c, Z. Fraenkel^e,

C. Garabatos^b, P. Glässel^d, G. Hering^b, J. Holeczek^b, V. Kushpil^a, G. Krobath^d, W. Ludolphs^d,

A. Maas^b, A. Marín^b, J. Milošević^d, D. Miśkowiec^b, L. Musa^h, R. Ortega^d, Y. Panebrattsev^c,

O. Petchenova^c, V. Petráček^d, S. Radomski^b, J. Rak^b, I. Ravinovich^e, P. Rehak^g, H. Sako^b,

W. Schmitz^d, J. Schukraft^h, S. Sedykh^b, W. Seipp^d, S. Shimansky^c, J. Stachel^d, M. Šumbera^a,

H. Tilsner^d, I. Tserruya^e, G. Tsiledakis^b, J. P. Wesselsⁱ, T. Wienold^d, B. Windelband^d, J. P. Wurm^j, S. Yurevich^d, V. Yurevich^c

^a NPI/ASCR, Řež, Czech Republic ^b GSI, Darmstadt, Germany ^c JINR, Dubna, Russia ^d Universität Heidelberg, Germany ^e Weizmann Institute, Rehovot, Israel ^f Department for Physics and Astronomy, SUNY Stony Brook, USA ^g Brookhaven National Laboratory, Upton, USA ^h CERN, Geneva, Switzerland ⁱ Universität Münster, Germany ^j Max-Planck-Institut für Kernphysik, Heidelberg, Germany

- CERES detector
- Particle identification
- Dilepton analysis
- Efficiency correction
- Results

Setup

- CERES Cherenkov Ring Electron Spectrometer
- designed and built for measurement of low-mass dielectrons
- target area: 2 SD drift detectors vertex reconstruction
- RICH detectors: electron ID
- 1999: TPC upgrade tracking, PID
- ullet 2000: Pb-Au run at 158 AGeV, 30M events, $\sigma/\sigma_{geo}=7\%$

- segmented target: 13 Au disks of 25 μ m thickness, 600 μ m diameter \rightarrow minimize radiation length into acceptance
- 2 Silicon drift detectors:

high resolution vertex reconstruction

TPC

- tracking, momentum reconstruction
- B up to 0.5 T
- radial drift field
- precise treatment of (\vec{E}, \vec{B}) , geometry, detailed understanding of gas properties mandatory

TPC performance

• tracking efficiency (MC):

• momentum resolution (MC): $\Delta p/p \sim 2\% \oplus 1\% \cdot p/(GeV/c)$

 \bullet mass resolution: $\Delta m/m \sim 4\%$ at the ϕ

TPC PID

- \bullet particle identification via specific ionisation (dE/dx)
- dE/dx vs momentum, positive tracks:

 $\bullet~{\rm dE/dx}$ resolution better than 10%

RICH electron identification

- electron ID = ring reconstruction
- use PID in TPC to prepare reference samples of
 - electrons (i.e. electron dominated)
 - non radiating pions
- \rightarrow distributions of reconstructed radius:

RICH electron efficiency and pion rejection

- determined from data
- electron efficiency: fraction of accepted electrons
- pion efficiency: fraction of pions misidentified as electrons
- ullet pion rejection = 1 pion efficiency
- electron efficiency: 70%
- pion suppression factor: $2 \cdot 10^3$

main sources for electrons:

- Dalitz decays, mainly $\pi_0
 ightarrow e^+ e^- \gamma$
- e^+e^- from γ conversions
- VM decays
- \rightarrow large combinatorial background:
 - single legs due to finite acceptance and efficiency
 - misidentified pions

analysis procedure:

- tracking and electron identification
- π^0 Dalitz and γ conversion rejection
- pairing: unlike sign like sign unlike sign mixed events
- background subtraction
- efficiency correction

 \rightarrow combined pion suppression factor: $4\cdot 10^4$

Dalitz and conversion rejection

• simulated opening angle distribution for e^+e^- pairs from conversions, Dalitz and VM decays

 \rightarrow require minimum opening angle 35 mrad

• require minimum single leg p_T

 \bullet target conversions and conversion in the SDD: cut on SDD dE/dx

- late conversions: e.g. RICH2 mirror
- rejection by pair cut on TPC segments: require isolation in TPC

signal/background invariant mass distribution

- background: invariant mass distribution of uncorrelated pairs
 → same-event like sign pairs . . .
- . . . or mixed event unlike sign
- normalisation of mixed event to same event background

• inv mass distributions:

 efficiency obtained from MC simulation, embedding generated pair into real event:

efficiency = reconstruction probability

• efficiency vs mass:

• single track efficiency vs azimuthal angle for different dilepton sources:

• data absolutely normalized

- $2571 \pm 224 \ e^+e^-$ pairs with $m_{ee} > 0.2 \ GeV$
- S/B = 1/21
- $\langle dN_{ch}/d\eta \rangle = 322$

- enhancement over hadron decay cocktail:
 - $0.2 \text{ GeV} < m_{ee} < 1.1 \text{ GeV}: 2.35 \pm 0.31 \text{ (stat.)}$
 - $0.2 \text{ GeV} < m_{ee} < 0.6 \text{ GeV}: 2.80 \pm 0.50 \text{ (stat.)}$
- \bullet systematic uncertainty of normalization $\sim 20\%$

calculation by R.Rapp using Rapp/Wambach modification of rho spectral function + QGP contribution calculation by R.Rapp using dropping mass scenario B.Kämpfer, thermal emission • reconstruction in 2 decay channels:

 $\bullet~\phi$ spectra observed in both leptonic and hadronic channels agree

•
$$\phi \to K^+ K^-$$
: $\frac{dN}{dy} = 2.05 \pm 0.14 (\text{stat}) \pm 0.25 (\text{syst})$
 $\phi \to e^+ e^-$: $\frac{dN}{dy} = 2.04 \pm 0.49 (\text{stat}) \pm 0.32 (\text{syst})$
• $\frac{dN/dy_{e^+e^-}}{dN/dy_{K^+K^-}} \le 1.6$ 95% CL

- \bullet 2000 data confirms dilepton excess between π and ρ
- improved mass resolution allows to distinguish between models
- \bullet consistent ϕ yield in the leptonic and hadronic channels
- event-by-event efficiency correction underway
- 3^{*rd*}, independent, analysis carried out, efficiency correction in preparation