Results from NA60 experiment at the CERN SPS

- The NA60 experiment: detector concept and performance
- Physics results from the In-In run

NA60: detector concept

Muon trigger and tracking NA50 spectrometer

DD

₹ S

2

Using the vertex spectrometer

 $\sigma_z \sim 200 \ \mu m$ along the beam direction Good vertex identification with ≥ 4 tracks

Resolution ~ 10 - 20 μ m in the transverse plane

Extremely clean target identification (Log scale!)

Data taking: In-In collisions

- 5-week long run in 2003 In-In @ 158 GeV/nucleon
- ~ 4×10¹² ions on target
- ~ 2×10⁸ dimuon triggers collected

Two muon spectrometer settings:

3 distinct physics topics

Combinatorial background subtraction

- Significantly reduced by the track matching procedure
- Nevertheless, still the dominant dimuon source for m_{....}<2 GeV/c²

	0.5 GeV	1 GeV (φ)	2 GeV	3 GeV (J/ψ)
signal/comb.	0.1	0.3	0.5	>100

- NA60 acceptance quite asymmetric \Rightarrow cannot use $N_{bck}^{\pm} = 2\sqrt{N^{++}N^{--}}$
- Mixed event technique developed \Rightarrow accurate to ~1%

Fake match background subtraction

Fake match: muon matched to a wrong vertex telescope track

Two methods for rejection (in agreement within 5%)

- Overlay MC ⇒ simpler approach
- Mixed events

 more complicated, rigorous approach

	0.5 GeV	1 GeV (φ)	2 GeV	3 GeV (J/ψ)
signal/fake	1.4	2.8	14	>100

muon trigger and

Physics topics 1: low mass continuum

- Low mass excess well established by CERES (dielectrons)
- Next step: clear discrimination between the various theoretical explanations

Good statistics AND mass resolution are needed

Low mass – NA60 In-In data

Net data sample:
360000 events, ~ 50% of total statistics

For the first time ω and φ peaks clearly visible in dilepton channel
(23 MeV mass resolution at the φ)

• $\eta \rightarrow \mu \mu$ also visible

• Fakes/CB < 10 %

Low mass: centrality selection

4 multiplicity bins used in analysis

bins	multiplicity	<dn<sub>ch/dη></dn<sub>
peripheral	4-28	17
semi-periph.	28-92	63
semi-central	82-160	133
central	>160	193

Decrease of S/B with centrality, as expected

bins	S/B
peripheral	2
semi-periph.	1/3
semi-central	1/8
central	1/11

Low mass: phase space coverage

- The NA60 acceptance extends down to low m_T
- Rapidity coverage: 0<y_{cm}<1 (slightly p_T dependent)

Low mass: peripheral collisions

- Peripheral data well reproduced by the hadronic cocktail (for all p_T bins)
- Good fit quality down to low mass and p_T (low acceptance region well under control)

- Fit independently in 3 p_T bins hadron decay cocktail and DD to the data ($m_{\mu\mu}$ <1.4 GeV/c²)
- Free parameters:
 - η/ω , ρ/ω , ϕ/ω , DD, ($\eta'/\eta = 0.12$, fixed)
 - overall normalization

Understanding the more central data

Cocktail parameters from peripheral data?

How to fit in the presence of an unknown source?

 \rightarrow Try to find excess above cocktail (if it exists) without fit constraints

A simple approach is used to subtract known sources (except the ρ):

- ω and φ: yields fixed to get, after subtraction, a smooth underlying continuum
- η: set upper limit by "saturating" the yield in the mass region 0.2–0.3 GeV
- \Rightarrow leads to a lower limit for the excess at low mass

• ρ/ω =1.2, fixed from high p_T data

Low mass: excess in central In-In collisions

Excess spectra from difference data-cocktail

•No cocktail ρ and no DD subtracted

Clear excess above the cocktail ρ, centered at the nominal ρ pole and rising with centrality

• Excess even more pronounced at low p_T

Systematics

Illustration of sensitivity

to correct subtraction of combinatorial background and fake matches

 \clubsuit to variation of the η yield

Systematic errors of continuum 0.4<M<0.6 and 0.8<M<1GeV 25%

Structure in ρ region completely robust

Comparison to RW, BR and vacuum p

Predictions for In-In by Rapp et al (2003) for $dN_{ch}/d\eta = 140$, covering all scenarios

Theoretical yields, folded with acceptance of NA60 and normalized to data in mass interval < 0.9 GeV

Only broadening of ρ (RW) observed, no mass shift (BR)

Comparison to RW($2\pi + 4\pi + QGP$)

Predictions for In-In by Rapp et al. (11/2005) for $dN_{ch}/d\eta$ = 140

Now the whole spectrum is reasonably well described, even in absolute terms (resulting from improved fireball dynamics)

direct connection to IMR results >1 GeV from NA60

The yield above 0.9 GeV can be sensitive to the degree of vectoraxialvector mixing and therefore to chiral symmetry restoration!

Comparison to RR

broadening described

Ruppert / Renk, Phys.Rev.C (2005)

Spectral function only based on hot pions, no baryon interactions included (shape similar RW)

$$D_{\rho}(M,q;T) = [M^2 - m_{\rho}^2 - \Sigma_{\rho \pi\pi}]^{-1}$$

continuum contributions, in the spirit of quark-hadron duality, also added (fills high mass region analogous to NA50 IMR description)

Physics topics 2: intermediate mass region

- IMR excess in S-U/S-W and Pb-Pb, with respect to p-A, established by NA38/NA50 and Helios-3
- Can be ascribed to both:
 - Anomalous open charm enhancement
 - Thermal dimuon production

NA60 proposal: discriminate between the two explanations, by tagging, through the muon offsets, the semi-leptonic decays of DD pairs

IMR – NA60 In-In data: is an excess present?

- Open charm and Drell-Yan generated with PYTHIA
- Drell-Yan normalization fixed using the high mass region
- Open charm normalization: use
 - \Rightarrow NA50 p-A result (better control of systematics related to $\mu\mu$ channel)
 - \Rightarrow World-average cc cross section (based on direct charm measurements) (differ by a factor ~ 2)

• Answer: Yes, an excess in the IMR is clearly present (same order of magnitude of the NA50 result)

IMR: measuring the muon offset

As in NA50, the mass shape of the In-In excess is compatible with open charm \Rightarrow not conclusive, muon offset information needed

Muons from D $\rightarrow \mu$ + X do not converge to the interaction vertex

• Typical offset of muons $\begin{cases} D^{+} : c\tau = 312 \ \mu m \\ D^{\circ} : c\tau = 123 \ \mu m \end{cases}$

Offset resolution 40-50 μ m (measured on J/ ψ data)

- Muon offsets: ∆x, ∆y between the vertex and the track impact point in the transverse plane at Z_{vertex}
- $\Delta_{\mu} \Rightarrow$ offset weighted by the covariance matrices of the vertex and of the muon track

$$\Delta_{\mu} = \sqrt{(\Delta x^2 V_{xx}^{-1} + \Delta y^2 V_{yy}^{-1} + 2\Delta x \Delta y V_{xy}^{-1})/2}$$

$$\Delta = \sqrt{\left(\Delta_{\mu 1}^2 + \Delta_{\mu 2}^2\right)/2}$$

IMR: is the excess due to open charm?

 \Rightarrow Fit IMR \triangle distribution fixing prompt contribution to the expected Drell-Yan yield

Answer: No, the excess seen in In-In is not due to open charm enhancement

IMR: is the excess due to prompt dimuons?

 \Rightarrow Fit IMR Δ_{μ} distribution fixing open charm contribution to the expected value (from NA50 p-A)

• Answer: Yes, the excess seen in In-In is prompt

Mass shape and centrality dependence of the excess

Physics topics 3: J/ψ suppression

Anomalous J/ ψ suppression, discovered by NA50 in Pb-Pb collisions

NA60 proposal: is anomalous suppression present also in lighter nuclear systems?

Can we identify a scaling variable for the suppression? L, N_{part} , density of participants, energy density?

J/ ψ suppression – NA60 In-In data

At SPS energies, the reference process commonly used to quantify J/ψ suppression versus centrality is Drell-Yan

- → Drell-Yan production scales with the number of binary N-N collisions
- \rightarrow No sizeable final state effects (shadowing or absorption)

J/ψ suppression - "standard" analysis

- 3 centrality bins, defined through E_{ZDC}
- J/ ψ nuclear absorption $\rightarrow \sigma^{J/\psi}_{abs}$ = 4.18 ± 0.35 mb (from NA50 @ 450 GeV)
- ~ 8% uncertainty on the rescaling to 158 GeV

Anomalous J/ψ suppression is present in In-In collisions A finer centrality binning is needed to sharpen the picture

Direct J/ψ sample

To overcome the problem of DY statistics, directly compare the measured J/ψ centrality distribution with the distribution expected in case of pure nuclear absorption

The following pattern is observed:

- Onset of anomalous suppression between 80 < N_{Part} < 100
- Saturation at large N_{Part}

 good agreement is found in the peripheral zone between data and theoretical curve

Comparison with previous results

Qualitative agreement with NA50 as a function of N_{part} \Rightarrow new set of Pb-Pb results needed, with reduced error bars

Systematics no significant effect present on the measured shape except for the very central points where systematic error can be larger than statistical one

29

Comparison with theoretical models (I)

Good accuracy of NA60 data allows a quantitative comparison with the predictions of the various theoretical models

Suppression by hadron comovers (Capella-Ferreiro) nuclear absorption and comovers interaction $\sigma_{abs} = 4.5 \text{ mb}$ $\sigma_{co} = 0.65 \text{ mb}$ (Capella-Ferreiro)

Tuned on NA50 data:

Comparison with theoretical models (II)

QGP+hadrons+regeneration+in-medium effects (Grandchamp, Rapp, Brown)

The smeared form (dashed line) is obtained taking into account the resolution on $N_{\text{Part}},$ due to our experimental resolution

Small difference in the $\sigma^{J/\psi}_{abs}$ used (4.4 mb)

The model does not follow the measured J/ψ suppression pattern in the central In-In collisions (though better than comovers ...)

Comparison with theoretical models (III)

The dashed line includes the smearing due to the ZDC resolution

Percolation model (Digal, Fortunato, Satz)

Sharp onset (due to the disappearance of the χ_c meson) at N_{part} ~ 125 for Pb-Pb and ~ 140 for In-In

Conclusions

Low-mass region

- Lepton pair excess at SPS energies confirmed
- Models predicting strong mass shift of the intermediate ρ not confirmed
- Models predicting strong broadening can describe data

Intermediate-mass region

- Enhancement of dimuon yield confirmed
- Not consistent with an enhancement of open charm
- Consistent with an enhanced prompt source

• J/ ψ suppression

- Anomalous J/ ψ suppression present also in In-In
- Centrality dependent, with an onset around N_{part}=90
- Theoretical predictions (tuned on Pb-Pb) do not properly describe our data

http://cern.ch/na60

The NA60 experiment

R. Arnaldi, K. Banicz, K. Borer, J. Buytaert, J. Castor, B. Chaurand, W. Chen, B. Cheynis,
C. Cicalò, A. Colla, P. Cortese, S. Damjanović, A. David, A. de Falco, N. de Marco, A. Devaux,
A. Drees, L. Ducroux, H. En'yo, A. Ferretti, M. Floris, P. Force, A. Grigorian, J.Y. Grossiord,
N. Guettet, A. Guichard, H. Gulkanian, J. Heuser, M. Keil, L. Kluberg, Z. Li, C. Lourenço,
J. Lozano, F. Manso, P. Martins, A. Masoni, A. Neves, H. Ohnishi, C. Oppedisano, P. Parracho,
P.Pillot, G. Puddu, E. Radermacher, P. Ramalhete, P. Rosinsky, E. Scomparin, J. Seixas, S. Serci,
R. Shahoyan, P. Sonderegger, H.J. Specht, R. Tieulent, E. Tveiten, G. Usai, H. Vardanyan,
R. Veenhof and H. Wöhri

Excess spectra from difference data-cocktail

p_T < 0.5 GeV

No cocktail ρ and no DD subtracted

Clear excess above the cocktail ρ, centered at the nominal ρ pole and rising with centrality Similar behaviour in

the other p_T bins

Perspectives

(now) writing papers

Analysis of In-In data still ongoing

- Acceptance corrected LMR spectra
- Complete $\varphi \to \mathsf{KK}$ analysis
- Radial flow for ω and ϕ
- Improve alignment (IMR)
- Detailed study of the J/ψ suppression pattern
- Use full statistics (now 50%)

It would be interesting to have such good quality data with other collision systems

p-A: data being analyzed

Crucial reference for:

- IMR studies (400 GeV)
- Estimate of J/ψ nuclear absorption (158 GeV)
- χ_C nuclear dependence

Mass shape and centrality dependence of the excess

7

Introduction

• NA60 is a second generation experiment, designed to answer specific questions left open, in the leptonic sector, by the previous round of SPS experiments, finished in 2000 (and that can hardly be addressed at RHIC and LHC)

• It has been designed in order to reach unprecedented accuracy in the measurement of muon pair production in HI collisions

• After its approval in 2000, NA60 has taken data in 2002 (p-A), 2003 (In-In) and 2004 (p-A), now being analyzed

• First answers to the physics questions at the basis of the NA60 program are now available

NA60: detector concept

• Origin of muons can be accurately determined

Interlude: investigating the ϕ puzzle

- In-In data should help solving the long debated $\boldsymbol{\varphi}$ puzzle
- NA50 ($\phi \rightarrow \mu\mu$) measures lower T values than NA49 ($\phi \rightarrow KK$)
- NA49 sees an increase of T with centrality

The difference between NA49 and NA50 is **not** due to the different decay channel under study

- NA60 can measure both $\varphi{\rightarrow}\mu\mu$ and $\varphi{\rightarrow}KK$ decay modes
- Work in progress for $\phi \rightarrow KK$ (no PID available!)