Dilepton Spectroscopy

in (Ultra-) Relativistic Heavy-Ion Collisions

Ralf Rapp

Cyclotron Institute

+ **Physics Department**

Texas A&M University College Station, USA

CBM-05 Workshop GSI Darmstadt, 15.12.05

Introduction: EM-Probes -- Basic Questions

Thermalization \Rightarrow **study the phase diagram:**

- (highest) temperature of the matter
- chiral symmetry restoration (mass generation!)
- in-medium spectral properties below + above T_c

Inevitable consequences of QGP, link to lattice QCD

Outline

2.) <u>EM Emission Rates and Chiral Symmetry</u>

- EM Thermal Rates
- Axial-/Vector Correlators and Chiral Sum Rules

3.) <u>Medium Effects and Thermal Dileptons</u>

- Lattice QCD
- Hadronic Many-Body Calculations
- Dropping Mass and Vector Manifestation

4.) Dileptons at SPS

- Recent CERES Data
- NA60 Data: Critical Appraisal

5.) <u>Conclusions</u>

2.) <u>EM Emission Rates and Chiral Symmetry</u>

JD

$$\boldsymbol{\Pi}_{\rm em}(\boldsymbol{q}) = -\boldsymbol{i} \int \boldsymbol{d}^4 \boldsymbol{x} \, \boldsymbol{e}^{\boldsymbol{i}\boldsymbol{q}\boldsymbol{x}} \left\langle \boldsymbol{j}_{\rm em}(\boldsymbol{x}) \boldsymbol{j}_{\rm em}(\boldsymbol{0}) \right\rangle_{\boldsymbol{T}}$$

$$\sim e^{-\frac{dR_{ee}}{d^4q}} = \frac{const}{M^2} \alpha^2 f^B(q_0,T) Im \Pi_{em}(M,q;\mu_B,T)$$

$$\sim \gamma q_0 \frac{dR_{\gamma}}{d^3q} = const \alpha f^B(q_0,T) Im \Pi_{em}(q_0=q;\mu_B,T)$$

Medium Modifications:

π-gas	i hadron g	gas <mark>i had</mark>	ron liquid 👘	QGP liquid	QGP
χĒΤ	many-body	√(2↔2)	deg. of free	dom? resona	nces?
cons	istent	extrap <mark>olate</mark>	\Rightarrow phase t	$ransition \Leftarrow$	pQCD
0 0.	05	0.3	0.7	5 ε	GeVfm ⁻³
120	$, 0.5 \rho_0$	150-160, 2 <i>p</i>	175,	$5\rho_0$ T	MeV], ρ_{hac}

To date: realistic descriptions extrapolated bottom-up (hadronic) or top-down (pQCD)

2.2 Chiral Symmetry Breaking and Restoration

Splitting of "chiral partners" $\rho - a_1(1260) \Rightarrow$ Chiral Symmetry Breaking

$$\frac{dN_{ee}}{d^4xd^4q} = \frac{-\alpha^2}{\pi^3 M^2} f^B(T) \operatorname{Im}\Pi_{em} \sim [\operatorname{Im}D_{\rho} + \operatorname{Im}D_{\omega}/10 + \operatorname{Im}D_{\phi}/5]$$

 ρ -meson dominated!

• <u>Axialvector Channel:</u> $\pi^{\pm}\gamma$ invariant mass-spectra ~ *Im D_{a1}(M)* ?! <u>or:</u> ρ_{long} chiral partner of $\pi \equiv$ "Vector Manifestation" [Harada+Yamawaki '01]

2.3 Chiral Sum Rules and the a₁(1260)

• Energy-weighted moments of difference *vector – axialvector*:

$$I_{0} = -\int \frac{ds}{\pi s^{2}} (Im\Pi_{V} - Im\Pi_{A}) = \frac{1}{3} f_{\pi}^{2} \langle r_{\pi}^{2} \rangle - F_{A}$$
[Das etal '67]

$$I_{1}(s_{0}) = -\int_{0}^{s_{0}} \frac{ds}{\pi s} (Im\Pi_{V} - Im\Pi_{A}) = f_{\pi}^{2}$$
[Weinberg '67]

$$I_{2}(s_{0}) = -\int_{0}^{s_{0}} \frac{ds}{\pi} (Im\Pi_{V} - Im\Pi_{A}) = 0$$

$$I_{3} = -\int \frac{sds}{\pi} (Im\Pi_{V} - Im\Pi_{A}) = c\alpha_{s} \langle (\overline{q}q)^{2} \rangle$$

- require **a**₁(1260) contributions
- extended to finite temperature [Kapusta+

Shuryak '93]

3.) Medium Effects and Thermal Dileptons

3.1 Lattice QCD (QGP)

- IQCD << pQCD at low mass (finite volume?)
- currently no thermal photons from lQCD
- vanishing electric conductivity !? but: [Gavai '04]

3.2 In-Medium II: Hadronic Many-Body Theory

[Chanfray etal, Herrmann etal, RR etal, Koch etal, Weise etal, Post etal, Eletsky etal, Oset etal, ...]

ρ-Propagator:

$$\mathbf{v} \in \mathbf{\Sigma}_{\pi}$$

V

$$D_{\rho}(M,q:\mu_{B},T) = [M^{2}-m_{\rho}^{2}-\Sigma_{\rho\pi\pi}-\Sigma_{\rhoB}-\Sigma_{\rhoM}]^{-1}$$

$$= \int D_{\pi}v_{\rho\pi\pi}^{2}D_{\pi}, \quad \mathcal{M} = \int D_{M}v_{\rho\pi M}^{2}[f^{\pi}-f^{M}]$$

3.2.2 $\rho(770)$ Spectral Function in Nuclear Matter In-med π -cloud + Relativist. ρ - $N \rightarrow B^*$ In-med π -cloud + ρ - $N \rightarrow B^*$ resonances (low-density approx) ρ -N \rightarrow N(1520) [Post lUrban [Cabrera vacuum **q**=0 GeV etal '98] $- \rho_{N} = 0.5 \rho_{0}$ **etal** '02] etal '02 ${}_{2}$ = -- ρ_{N} = 1.0 ρ_{0} -- ρ_{N} = 2.0 ρ_{0} $\rho_N = 0.5 \rho_0$ $\rho_N = \rho_{\theta}$ q=0 $\rho_N = \rho_{\theta}$ 2 0.6 0 0.2 0.4 0.8 1.2.0 0.6 0.7 0.8 0.9 1.0 1.1 0.4 0.2 0.6 0.4 0.8 1.0 1.2 M^{2} [GeV²] MI (GeV) 2.5e-06 $\pi N \rightarrow \rho N PWA$ Constraints: γN , γA Vacuum 0.5 po 2 p0 2e-06

- Consensus: broadening + mass-shift up
- Constraints from (vacuum) data important quantitatively

3.2.3 QCD Sum Rules + $\rho(770)$ in Nuclear Matter

dispersion relation for correlator:

$$\Pi_{\alpha}(Q^2 = -q^2)/Q^2 = \int_0^\infty \frac{ds}{s} \frac{Im\Pi_{\alpha}(q)}{Q^2 + s}$$

[Shifman,Vainshtein +Zakharov '79]

mass in GeV

• <u>rhs:</u> hadronic model (s>0): $Im \Pi_{\rho}(s) = \frac{m_{\rho}^{4}}{g_{\rho}^{2}} Im D_{\rho}(s) - \frac{s}{8\pi} (1 + \frac{\alpha_{s}}{\pi}) \Theta(s - s_{dual})$

(S)

also: [Asakawa+Ko '92, Klingl,Kaiser+Weise '97]

3.2.4 *p*-Meson Spectral Functions at SPS

- ρ-meson "melts" in hot and dense matter
- baryon density ρ_B more important than temperature
- reasonable agreement between models

Dilepton Emission Rates:

3.3 In-Medium III: Dropping Mass

[Brown+Rho '91, '02]

Scale Invariance of <u>L</u>OCD $\left\langle \overline{q}q \right\rangle_T^{1/n} / \left\langle \overline{q}q \right\rangle_{\text{vac}}^{1/n} = f_\pi^* / f_\pi = m_N^* / m_N = m_\rho^* / m_\rho, \text{ e.g.} = \left| 1 - \left(\frac{T}{T_c}\right)^2 \right|^m \left[1 - C\frac{\rho_B}{\rho_0} \right]$

- density dependence: [Hatsuda+ QCD sum rules: *C*=0.15 Lee '92]
- temperature dependence: quark condensate from chiral perturbation theory: $\frac{\langle qq \rangle_T}{\langle qq \rangle_{T}} \approx \left[1 - \left(\frac{T}{T_c}\right)^2\right]^{\frac{1}{3}}$
- vector dominance coupling: $Im \Pi_{\rho} = \frac{(m_{\rho}^*)^4}{g_{\rho}^2} Im D_{\rho}(m_{\rho}^*)$ (gauge invariance!)

3.4 In-Medium IV:

Vector Manifestation of Chiral Symmetry

- Hidden Local Symmetry: ρ -meson introduced as gauge boson, "Higgs" mechanism generates ρ -mass
- Vacuum: $\rho_L \leftrightarrow \pi$, good phenomenology (loop exp. $O(p/\Lambda_{\chi}, m_{\rho}/\Lambda_{\chi}, g)$)
- In-Medium: *T*-dep. $m_{\rho}^{(0)}$, g_{ρ} matched to OPE (spacelike), $\Lambda_{match} < \Lambda_{\chi}$, Renormalization Group running \rightarrow on-shell [Harada,
 - \Rightarrow dropping ρ -mass $\rightarrow 0$ (RG fixed point at T_c), Yamawaki etal, '01]

- violation of vector dominance: $a = 2 \rightarrow 1$

e.m. spectral function? matching HG-QGP: massless mesons?

4.) Dilepton Spectra in URHIC I: CERES/NA45

 \rightarrow Evolve dilepton rates over thermal fireball QGP+Mix+HG:

- central Pb-Au confirm strong medium effects
- dropping mass disfavored above ρ-mass?!

4.2 Recent Advances at SPS: Power of Precision

NA60 Data vs. Model Predictions [RR+Wambach '99; RR'03]

• ρ-meson "**melting**" supported (baryons!)

• dropping mass (as used to explain CERES data) ruled out

• open issues:

- (1) $M > 0.9 GeV (4\pi \rightarrow \mu^+ \mu^- !?)$
- (2) normalization: **0.6** ($p_t < 0.5 GeV$), **0.8** (all p_t), ~ 2 ($p_t > 1 GeV$)

(3) other models (vector manifestation, chiral virial approach, ...)

4.2.2 Modified Fireball and Absolute Normalization

- ρ-spectral function unchanged since [RR+Wambach '99]
- expanding fireball, fixed $S \leftrightarrow N_{ch}$: $V_{FB}(\tau) = (z_0 + v_z \tau) \pi (R_{\perp 0} + 0.5a_{\perp}\tau^2)^2$

Increase $a_{\perp} \Rightarrow$ reduced lifetime ($\tau = 9 \rightarrow 6 fm/c$), increased $v_{\perp} = 0.4 \rightarrow 0.5c$

• reasonable agreement with absolute normalization, but ...

• too little yield at high \mathbf{p}_t ; "free ρ "? ω ? check central ...

4.2.3 In-Medium Hadronic vs. NA60: Central Collisions

4.2.4 Intermediate-Mass Region

- Previous calculation only included " 2π " states via $\rho(770)$
- " 4π " states dominate in the vacuum correlator above ~1.1 GeV
- medium effect: "chiral mixing":

$$\Pi_V(q) = (1 - \varepsilon) \Pi_V^0(q) + \varepsilon \Pi_A^0(q)$$

[Eletsky+Ioffe '90]

• upper estimate:

 $\varepsilon = \frac{1}{2} \frac{n_{\pi}(T, \mu_{\pi})}{n_{\pi}(T_c)}$

[van Hees +RR in prep]

⇒ excess above ρ-mass in principle accounted for; details forthcoming

4.2.5 Chiral Virial Approach vs. NA60 (central)

4.2.6 Preliminary Lessons from NA60

- hadronic many-body predictions supported data (" ρ -melting" at $\sim T_c$)
- dropping mass as used for CERES in '90's ruled out revised versions?? (vector manifestation / VDM violations)
- quality control mandatory (model constraints, QCDSRs, ...)
- absolute yields important (fireball evolution)
- chiral virial approach: lack of broadening
- *M*=1-1.5 *GeV*: indications for chiral mixing

To do:

- centrality dependence, free ρ 's (surface vs. volume)
- sensitivity to evolution: T_{chem} , T_c , lifetime
- chiral restoration: "duality" viable (hadron liquid → sQGP)
 evaluate chiral sum rules
- ω and ϕ , intermediate-mass region (*M*=1-3 GeV)

5.) Summary and Conclusions

- Strong medium effects in *l*⁺*l*⁻ spectra
- New level of precision in NA60 enables model discrimination
- suggestive for ρ -melting at T_c , no apparent mass shift
- alternative models? (quality control)
- Chiral Restoration:
 - direct (exp.): measure axialvector
 - indirect (theo.): (1) effective model (constraints)

(2) chiral sum rules (V-A moments) vs. IQCD

(3) compatibility with dilepton/photon data

• HADES? RHIC? LHC? SPS-09? CBM? ...

the future of dilepton spectroscopy has begun ...