Overview : QCD Phase Diagram

T. Hatsuda (Univ. Tokyo)

Outline of this talk

- Possible phase structure in QCD

 what we know and what we do not know
- 2. Phases in hot QCD
- 3. Phases in dense QCD
- 4. Future experimental facilities
- 5. Summary

More on H₂O

Physics Today, Dec. vol.58 (2005) http://www.lsbu.ac.uk/water/phase.html

http://boojum.hut.fi/research/theory/typicalpt.html

Phases in QCD ? – a schematic picture --

Theory behind: Quantum Chromo Dynamics

1965 $SU_c(3)$ YM theory as a model of strong interaction

 $L = -\frac{1}{4}G^a_{\mu\nu}G^{\mu\nu}_a + \overline{q}\gamma^{\mu}(i\partial_{\mu} - gt^a A^a_{\mu})q - m\overline{q}q \qquad \text{Nambu ('65)}$

1965-1972 Precursors of asymptotic freedom

Vanyashin & Terenteev ('65), Khriplovich ('69), 't Hooft ('72)

1973 Discovery of asymptotic freedom

Gross & Wilczek, Politzer ('73)

Theory behind: Quantum Chromo Dynamics

Origin of each "phase"

Scale of each "phase" g < 1 $(T, \mu_B) > 10^3 \, {
m GeV}$ T $T^* \sim 2T_c$? QGP $T_c \sim (\sqrt{3}/\pi) M$ $\sim~170~{
m MeV}$ $T_c \sim 0.57 \Delta_{T=0}$ χSB CSC • μ_B $E = \sqrt{\mathbf{p}^2 + M^2}$ $\delta\mu_c = \mu_c - M_{\rm N}$ $M\sim 300 {
m MeV}\sim {
m \Lambda_{QCD}}$ $E = \sqrt{(p - p_{\rm F})^2 + \Delta^2}$ $\sim~\Lambda_{
m QCD}$? $\Delta\sim$ 50MeV ? $ho_c = (3-10)
ho_0$?

Symmetry of each "phase" (case for small m_{ud} with $m_s = \infty$)

doped

T (K)

- Abuki, Itakura & Hatsuda, PRD ('02)
- Kitazawa, Koide, Kunihiro & Nemoto, PRD ('02)
- Chen, Stajic, Tan & Levin, Phys. Rep. ('05)

Equation of State (μ =0)

Order of the thermal transition (μ =0)

Svetitsky & Yaffe, NPB210 ('82) Pisarski and Wilczek, PRD29 ('84)

Scale degeneracy near T_c

 T^{-1} Inter-particle distance $(gT)^{-1}$ Electric screening length $(g^2T)^{-1}$ Magnetic screening length

Pre-formed pairs (PFP) for $T_c < T < T^*$

Critical end point at finite μ

- First evidence in some models: Asakawa & Yazaki, NPA ('89), Barducci et al., PLB ('89) See however, Klimt, Lutz and Weise, PLB ('90)
- General properties in Ginzburg-Landau+RG

Halasz et al., PRD ('98), Hatta and Ikeda, PRD ('03)

Phases in dense QCD

http://chandra.harvard.edu/resources/illustrations/neutronStars.html

 μ_B

Bailin & Love, Phys. Rep. 107 (1984) Iwasaki & Iwado, PL B350 (1995) Alford, Rajagopal & Wilczek, PL B422 (1998) Rapp, Schafer, Shuryak & Velkovsky, PRL81 (1998)

Origin of Color Superconductivity (CSC)

 $\Delta_{i\alpha} = \epsilon_{ijk} \epsilon_{\alpha\beta\gamma} \langle q_{j,\beta} C \gamma_5 q_{k,\gamma} \rangle$ flavor color

Major differences from BCS

1. Highly **relativistic** Long range **magnetic int.**

$$\Delta|\sim \varepsilon_{\rm F}~e^{-c/\sqrt{\alpha_s}}$$

2. Color-flavor entanglement

$$\Delta_{i\alpha} = \begin{pmatrix} \Delta_1 & 0 & 0 \\ 0 & \Delta_2 & 0 \\ 0 & 0 & \Delta_3 \end{pmatrix}$$

 $\begin{cases} \mbox{High Tc superconductor} \\ T_c/\epsilon_F \ \sim 0.1 \\ \mbox{Compact Cooper pair} \\ size \ \sim 1-10 \ \mbox{fm} \end{cases}$

Variety of phases (such as ice and ³He) CFL, 2SC, dSC, uSC, etc

- **2SC**: Bailin and Love, Phys. Rep. ('84)
- CFL: Alford, Rajagopal and Wilczek, NPB ('99)
- dSC: lida, Matsuura, Tachibana and Hatsuda, PRL ('04)
- **uSC:** Ruster, Werth, Buballa, Shovkovy and Rischke, PRD ('05)
- FFLO, gapless phase, CSL, K-cond. etc

Phase structure relevant to heavy ion collisions no charge-neutrality & β -equilibrium $n_d = n_u$, $n_s=0$

- **2SC:** Bailin and Love, Phys. Rep. ('84)
- PG : Kitazawa, Koide, Kunihiro and Nemoto, PRD ('04)

Thermal phase transition of CSC

Ginzburg-Landau theory at $T \sim T_c$

Weak coupling analyses Matsuura, lida, Hatsuda & Baym, PRD 69 ('04) Giannakis, Hou, Ren & Rischke, PRL 93 ('04)
 Lattice simulations : Digal, Hatsuda & Ohtani, hep-lat/0511018

Thermal transition : CFL \rightarrow normal

Ginzburg-Landau parameter ::

Case for $m_{uds}=0$

Thermal transition : 2SC \rightarrow normal

Ginzburg-Landau parameter ::

Case for $m_s = \infty$

BCS-BEC crossover ?

BCS-BEC crossover ?

See Kitazawa, Koide, Kunihiro & Nemoto, PTP108 ('02)

Probing Dense QCD

J-PARC

SIS100/300

Future Experimental Facilities for hot/dense QCD

LHC (2008-) J-PARC (2008-) SIS100/300 (201? -)

2.8 TeV/A

- Hottest matter
- Precision QGP

50 GeV PS

Phase I

- Dense mesic nuclei
- Exotic hadrons

Phase II

Primary beam phys.

90 GeV PS

- Densest matter
- In-medium hadrons

Heavy ion collision at J-PARC & SIS energies

Figure taken from JHF report (2002) by A.Ohnishi

Summary

"phase"	theory	exp./obs.	
χ SB (low T & low μ)	<u>Mature (precision physics)</u> lattice QCD effective theories	variety of data	
QGP (high T)	<u>Developing</u> lattice QCD effective theories	data accumulation RHIC \rightarrow LHC	
QM and CSC (low T & high μ)	Developing effective theories Need lattice inputs	 Neutron stars (M-R) SIS, J-PARC, Nuclotron 	
"PG" (intermediate T & μ)	<u>Not- fully explored</u> Interesting connection to HTS, cold atoms	Relevant region to RHIC, SIS, J-PARC, Nuclotron ?	

published, Dec. 15, 2005

1. What is quark-gluon plasma

Part I. Basic Concept of Quark-Gluon Plasma:

- 2. Introduction to QCD
- 3. Physics of quark-hadron phase transition
- 4. Field theory at finite temperature
- 5. Lattice gauge approach to QCD phase transitions
- 6. Chiral phase transition
- 7. Hadronic states in hot environment

Part II. QGP in Astrophysics:

- 8. QGP in the early universe
- 9. Compact stars

Part III. QGP in Relativistic Heavy Ion Collisions:

- 10. Introduction to relativistic heavy ion collisions
- 11. Relativistic hydrodynamics for heavy ion collisions
- 12. Transport theory for pre-equilibrium process
- 13. Formation and evolution of QGP
- 14. Fundamentals of QGP diagnostics
- 15. Results from CERN-SPS experiments
- 16. First results from BNL-RHIC
- 17. Detectors in relativistic heavy ion experiments

http://utkhii.px.tsukuba.ac.jp/cupbook/index.html

Appendices A-H: 120 Exercises

Back up slides

<u>Quark matter</u>: u, d, s, e⁻ with d \neq u + e⁻, d \neq u + e⁻, s \neq d

M-R relation in APR EoS + CFL quark matter

Alford, Braby, Paris & Reddy, ApJ 629 (2005)

Cooling of neutron stars

on			
enc	Q color super		
hing	n superfluidity	exp(-∆/T)	
	K^- condensate	$n+ < K^- > \rightarrow n + e^- + \bar{\nu}_e$	$\sim 10^{26} T_9^6$
	π^- condensate	$n+<\pi^-> \rightarrow n+e^-+\bar\nu_e$	$\sim 10^{26} T_9^6$
		$u + e^- \rightarrow s + \nu_e$	
		$s \rightarrow u + e^- + \bar{\nu}_e$	
ш	guark anect orea	$u + e^- \rightarrow d + \nu_e$	10 19
X	Quark direct Urca	$d \to u + e^- + \bar{\nu}_e$	$\sim 10^{26} T_{ m o}^{6}$
tic		$u + u + e^{-} \rightarrow u + s + \nu_{e}$ $u + u + e^{-} \rightarrow u + s + \nu$	
		$u + u + e \rightarrow u + u + \nu_e$ $d + u + e^- \rightarrow d + e + \nu_e$	
	Quark modified Urca	$a + u + e \rightarrow a + a + \nu_e$	$\sim 10^{-3} I_9^{-3}$
	Oreach and life of Harris	$p + e^- \rightarrow n + \nu_e$	1020778
S	Direct Urca	$n ightarrow p + e^- + ar{ u}_e$	$\sim 10^{27} T_9^6$
tan		$n+p+e^- \to n+n+\nu_e$	
da	Modified Urca	$n + n \rightarrow n + p + e^- + \bar{\nu}_e$	$\sim 10^{20} T_9^8$
2	Name	Processes	Emissivity

Cooling of neutron stars

Quark number susceptibility

Ejiri et al. (Bielefeld-Swansea Coll.)

Screening masses at $T>T_c$ on the lattice

Nakamura, Saito & Sakai, Phys.Rev.D69 ('04) 014506

$c\bar{c}$ bound state above T_c (quenched)

1. J/ ψ survives up to 1.6 T_c

2. J/ ψ disappears in 1.6 T_c < T < 1.7 T_c

Asakawa & T.H., PRL 92 ('04) 012001

see also,

Umeda et al, hep-lat/0401010 Datta et al., PRD 69 ('04) 094507